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Abstract: We study the low-energy effective action on confining strings (in the funda-

mental representation) in SU(N) gauge theories in D space-time dimensions. We write

this action in terms of the physical transverse fluctuations of the string. We show that for

any D, the four-derivative terms in the effective action must exactly match the ones in the

Nambu-Goto action, generalizing a result of Lüscher and Weisz for D = 3. We then ana-

lyze the six-derivative terms, and we show that some of these terms are constrained. For

D = 3 this uniquely determines the effective action for closed strings to this order, while

for D > 3 one term is not uniquely determined by our considerations. This implies that for

D = 3 the energy levels of a closed string of length L agree with the Nambu-Goto result at

least up to order 1/L5. For any D we find that the partition function of a long string on a

torus is unaffected by the free coefficient, so it is always equal to the Nambu-Goto partition

function up to six-derivative order. For a closed string of length L, this means that for

D > 3 its energy can, in principle, deviate from the Nambu-Goto result at order 1/L5,

but such deviations must always cancel in the computation of the partition function (so

that the sum of the deviations of all states at each energy level must vanish). In particular

there is no correction at this order to the ground state energy of a winding string. Next,

we compute the effective action up to six-derivative order for the special case of confining

strings in weakly-curved holographic backgrounds, at one-loop order (leading order in the

curvature). Our computation is general, and applies in particular to backgrounds like the

Witten background, the Maldacena-Nuñez background, and the Klebanov-Strassler back-

ground. We show that this effective action obeys all of the constraints we derive, and

in fact it precisely agrees with the Nambu-Goto action (the single allowed deviation does

not appear).
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1 Introduction

The confining string is a basic object in confining SU(N) gauge theories, in particular when

there is no matter in representations of non-zeroN -ality, such that this string is stable. Like

any other solitonic object, it is interesting to study the low-energy effective action on this

string (at energies much lower than the QCD scale), in order to understand its low-energy

fluctuations and the light excitations of long strings. This study is particularly interesting

since the confining string in large N gauge theories is believed to be a weakly coupled

fundamental string moving in some background (with a string coupling of order 1/N [1]).
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When this background is known, we can use it to compute the low-energy effective action

on the string. For most interesting confining theories the corresponding string background

is not yet known, and one can hope that studying (say, by lattice simulations) the low-

energy effective action on a confining string could teach us about the properties of this

background, and give clues for its construction.

The simplest effective action for a confining string in D space-time dimensions is the

Nambu-Goto action, which is simply the string tension T times the area of the string

worldsheet. A priori there is no reason why the effective action on confining strings should

take this simple form, but lattice simulations for pure Yang-Mills theories in D = 3 and

D = 4 show (as we will review below) that the effective action is very well approximated

by the Nambu-Goto form, with only very small deviations. Our goal in this paper will

be to understand why this is the case, and to estimate at what order deviations from the

Nambu-Goto action are expected to occur.

Two main approaches to constrain the effective action of a confining string have been

studied in the literature. The Polchinski-Strominger approach [2–4] uses a conformal gauge

on the worldsheet, in which the degrees of freedom in the effective action are the D em-

bedding coordinates of the string. In this approach the constraints on the effective action

come by requiring that it must have the correct (critical) central charge, and it was shown

that this implies that the four-derivative effective action must agree with the Nambu-Goto

form. However, it seems difficult to extend this approach to higher orders. In this paper

we follow the second approach [5–7], writing the effective action in static gauge, such that

the degrees of freedom are only the (D−2) transverse fluctuations of the string worldsheet.

Lüscher and Weisz argued in [7] that by computing the partition function of long winding

strings, and expressing it as a sum over string states, one can constrain the effective ac-

tion; they showed that the partition function on the annulus constrains the four-derivative

terms in D = 3 to be of Nambu-Goto form, but that for D > 3 there seems to be one

undetermined coefficient. Essentially, the information that goes into this approach is [8]

that the action should non-linearly realize the Lorentz symmetry rotating the direction

that the string propagates in and the transverse directions.

In the first part of this paper we generalize the approach of Lüscher and Weisz in two

directions. First, we compute the four-derivative partition function of a long winding string

on the torus, and we show that this constrains the four-derivative terms in the effective

action to be of Nambu-Goto form for any D. Then, we extend the computation to the

six-derivative terms, computing the partition function on the torus and on the annulus.

For general D we show that the considerations of Lüscher and Weisz allow us to determine

two of the three free coefficients at six-derivative order, but that one coefficient remains

unfixed. Strangely, it turns out that this free coefficient does not affect the partition

function of the long string on the torus, so that if there are corrections to energy levels

at six-derivative order (order 1/L5 for a string of length L) they must cancel exactly in

the partition function. In particular, our results imply that the ground state energy of a

closed winding string is exactly given by its Nambu-Goto form up to order 1/L5, and can

deviate from this form only starting at order 1/L7. For D = 3 we show that the effective

action is uniquely determined up to six-derivative order, so that the previous sentence

– 2 –
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applies to all states of closed winding strings. The computations of the partition functions

require a regularization of the effective action, and we use (following [7, 9]) a zeta function

regularization, which gives finite results, independent of the UV cutoff.

In most confining gauge theories we do not know how to compute directly the effective

action on the confining string, and we can only do it numerically by lattice simulations.

However, in the past decade a new class of confining gauge theories was discovered, whose

dual string theory description lives in a weakly curved background. In such backgrounds

we can compute explicitly the effective action on the confining string, and we perform this

computation to six-derivative order in the second part of our paper. More precisely, we

compute the leading dependence of the terms in the six-derivative effective action on the

curvature of the background (which typically maps to some negative power of the ’t Hooft

coupling). There are several motivations for this computation:

• It is the first example (as far as we know) of a direct computation of the effective

action on a confining string.

• We show that the effective action we compute obeys all the constraints discussed in

the previous paragraph, thus enabling us to test both the form of these constraints

and our computation of the effective action.

• Our computation allows us to check whether the term in the effective action that

is allowed to deviate from the Nambu-Goto form is actually present or not. This is

important since there may be additional constraints on the effective action that may

set this term to zero. We find that, at the leading order that we work in, there are

actually no deviations from the Nambu-Goto action.

• Some of the backgrounds we study are continuously related (by changing a dimen-

sionless parameter) to pure Yang-Mills and pure super Yang-Mills theories in D = 3

and D = 4, and we expect that the qualitative form of the effective action will not

change when we change the parameters.

We begin in section 2 with general comments on the effective action on confining

strings, and with a review of the known results. In section 3 we generalize the computations

of [7] to the torus partition function and to the next order in the derivative expansion.

In section 4 we write down the worldsheet action for strings in weakly curved confining

backgrounds, and the Feynman rules that follow from it. Our discussion in this section is

general, and in the following section 5 we discuss in detail some of the examples to which

our considerations apply. In section 6 we use this worldsheet action to compute the effective

action on the corresponding confining strings, at leading order in the space-time curvature.

We end in section 7 with our conclusions. Two appendices contain some technical details.

In appendix A we present the computations used in section 3, and in appendix B we review

our conventions for sections 4–6.

– 3 –
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2 General features of the effective action of a confining string

2.1 Generalities

In this paper we consider confining gauge theories in which the confining string is abso-

lutely stable. For SU(N) gauge theories, this means that there cannot be any dynamical

fields in representations with non-zero N -ality, such as the fundamental representation. Of

course, in the large N limit the confining string becomes stable even in the presence of

dynamical fields in the fundamental representation. For finite N , in the presence of such

fields, the string can break.

In this situation it makes sense to ask about the low-energy effective action on a long,

straight confining string. A string-like object in a D-dimensional gauge theory breaks

(D − 2) translation symmetries, so there should be (D − 2) massless Nambu-Goldstone

bosons on the worldsheet, whose expectation values are simply the transverse positions

of the string. In a generic confining theory we do not expect any additional massless

fields on the string worldsheet, so the effective action will involve only these massless

fields. In theories with additional symmetries there may be additional massless fields

on the worldsheet. For instance, in supersymmetric gauge theories, the confining string

typically breaks all the supersymmetry, so it should have additional massless fermions on

its worldvolume; for instance the confining string in the D = 4 N = 1 supersymmetric

Yang-Mills theory should have 4 massless Majorana-Weyl fermions on its worldvolume. In

this paper we will ignore the possibility of having such additional fields, though we expect

that they will not change most of our conclusions. It would be interesting to generalize our

analysis to include additional massless fields arising from additional symmetries.

The effective theory of the Nambu-Goldstone bosons is independent of their expecta-

tion value, so all interactions involve derivatives of all the fields. Thus, it is necessarily a free

field theory at low energies, but it could involve higher derivative corrections. In addition

to these massless fields, we expect to have for any confining string additional (bosonic and

fermionic) degrees of freedom on the worldsheet at some scale m; in a gauge theory charac-

terized by a single scale Λ (like pure Yang-Mills theories) we expectm ∼ Λ to be of the same

order as the square root of the string tension, while in gauge theories with dimensionless

parameters there may be some separation between the scales. The theory on the worldsheet

at the scale m may be weakly coupled, in which case we can describe the additional degrees

of freedom as massive particles, or it could be strongly coupled, in which case we have no

such description. The latter is more likely in a theory with a single scale, in which the

width of any particle-like state is governed by the same scale as its mass. In either case we

expect the effective action to be valid only below the scale m, where it should break down.

For a generic string-like soliton there is no reason to believe that any effective action

makes sense above the typical dynamical scale Λ of the field theory. However, the situation

of the confining string in large N gauge theories is different, since we believe [1] that such

gauge theories are equivalent to weakly coupled string theories, and in such theories there

is a well-defined action on the worldsheet that is valid at all energy scales. (Indeed, the

quantization of this action should include the full information about the large N gauge

theory.) In such a situation we can think of the low-energy effective action of the massless

– 4 –
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fields as coming from the exact string worldsheet action, when we integrate out all the

massive degrees of freedom on the worldsheet. Note that the action of a fundamental string

has a diffeomorphism symmetry, and, depending on the formalism, it may also contain a

worldsheet metric as a dynamical variable. Often in string theory we use the conformal

gauge, in which the worldsheet action is conformally invariant and there is no mass scale.

It is important to emphasize that the effective action on a long string arises in a different

gauge, in which we gauge-fix the diffeomorphism symmetry such that two of the worldsheet

coordinates are identified with space-time coordinates (the “static gauge”). In this gauge

the action has a mass scale, and we typically get (as we will see in various examples)

a theory of massive and massless fields. The low-energy effective action discussed above

arises when integrating out these massive fields. For strings in flat space, the effective

action in this gauge is precisely the Nambu-Goto action, which has only massless fields but

includes an infinite tower of higher derivative corrections to their action. This is a special

case where the effective action should make sense at all energies; of course, we know that

such a string theory is only consistent for a superstring in D = 10. Confining strings arise

from superstrings in curved backgrounds, and then some of the fields on the worldsheet

are massive at some scale m, and the low-energy effective action is more complicated.

As described above, we expect the effective action on a confining string to depend on

the derivatives of (D − 2) scalar fields, which we will denote by Xi (i = 2, . . . ,D − 1).

Apriori the action S =
∫

d2σL(σ) should include the most general terms consistent with

the SO(D − 2) rotation symmetry. At 0-derivative order there is a term in the action

density proportional to the effective string tension T ,

L0 = −T. (2.1)

At 2-derivative order there is a single possible term

L2 = −1

2
∂αX · ∂αX, (2.2)

whose coefficient we can always normalize in this way. Here α = 0, 1 goes over the world-

sheet coordinates, and we use the notation X ·X ≡ XiXjδij . At 4-derivative order there

are generally two independent terms (ignoring terms proportional to ∂2Xi which can be

eliminated by field redefinitions),

L4 = c2(∂
αX · ∂αX)(∂βX · ∂βX) + c3(∂

αX · ∂βX)(∂αX · ∂βX). (2.3)

The notation that we use here follows [7], up to a different normalization of c2 and c3. In

the special case of D = 3, there is only one field X and the two terms in (2.3) are identical.

At six-derivative order, there are several terms that apparently cannot be eliminated by

field redefinitions:

L6 = L6,4 + L6,6, (2.4)

L6,4 = c4(∂α∂βX · ∂α∂βX)(∂γX · ∂γX) + c5(∂αX · ∂βX)(∂γX · ∂α∂β∂γX),

L6,6 = c6(∂αX · ∂αX)3 + c7(∂αX · ∂αX)(∂βX · ∂γX)(∂βX · ∂γX) +

+c8(∂αX · ∂βX)(∂αX · ∂γX)(∂βX · ∂γX).

– 5 –
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The c5 term is naively non-trivial, but in fact since our action lives in a two-dimensional

space, one can show that it is actually proportional to the equation of motion (up to integra-

tions by parts); this is most easily seen by using light-cone coordinates, where the leading

order equation of motion is ∂+∂−Xi = 0. Thus, we will ignore this term from here on.

Similarly, in two dimensions the c8 term can be shown to be equal to a linear combination of

the c6 and c7 terms,1 so we will ignore it as well. For the special case of D = 3 the c4 term is

equivalent to the c5 term so it is also trivial, and there is only one independent term in L6,6.

The effective action we wrote here is for a string with no boundaries, and then only

terms with an even number of derivatives are allowed. In many cases it is interesting

to consider also confining strings with boundaries; for instance, such a situation arises in

the computation of Wilson loops (which are boundaries for a confining string worldsheet),

including the computation of the force between external quarks and anti-quarks. In the

presence of boundaries, there could be additional terms in the effective action which are

localized on the boundary (and may involve an even or an odd number of derivatives); in

particular, in the analysis above we did not write down terms which differ by an integration

by parts, so if we make a different choice for the form of the terms we write we will generate

some boundary terms. However, it is important to emphasize that the same confining string

could have different types of boundaries; for instance the string could end either on a Wilson

loop or on a domain wall, and it is not obvious that the boundary terms should be the same

for different boundaries. In this paper we focus on the closed string effective action, and

on the corrections to the closed string spectrum, so we ignore the boundary terms (which

only affect the open string spectrum). In some of our computations we will use worldsheets

with boundaries, and we will then assume that there are no boundary terms; this seems

reasonable for a string ending on a domain wall described by a D-brane, though it is not

necessarily true for strings ending on Wilson loops. This assumption does not influence

our results concerning the closed string effective action.

What can we compute using the effective action ? Obviously, we can use the tree-level

effective action to compute any dynamical processes below the scale m where the action is

expected to break down. However, it would be nice to be able to use the effective action also

for loop computations, such as the computation of the partition function of a long string

whose worldsheet is (say) a torus (this includes the corrections to the energies of wind-

ing closed string states), or loop corrections to scattering amplitudes on the worldsheet.

Generic loop computations lead to divergences, so the answer depends on the physics at the

cutoff scale and additional information is required (beyond the effective action) to obtain

finite answers. However, in special cases loop computations may give finite results, in which

case we can trust them. We will see that this happens in many cases when we use the effec-

tive action on a superstring; presumably this is because in a different gauge (the conformal

gauge) this action is finite, so it should lead to well-defined results. In other cases, like the

computation of the partition function of the low-energy effective action on a torus, we will

encounter divergences. Of course, such divergences arise already in the partition function of

a free field theory. We will regulate these divergences, as in [9], using a zeta function regular-

1We thank F. Gliozzi for pointing this out to us.
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ization. This regularization satisfies some nice physical properties (described in [9]) which

make it effectively independent of the physics at the cutoff, so we expect it to give correct

answers for the physics below the scale m (which should be independent of the cutoff).

2.2 Constraints on the effective action of a confining string

Two types of constraints on the effective action have been considered in the literature.

One constraint, originally analyzed by Lüscher and Weisz [7], arises from the fact that the

partition function of the string wrapped on various surfaces must have an interpretation

in terms of the propagation of physical string states along these surfaces. This constraint

is relevant for strings which have a limit in which they are weakly coupled (such as con-

fining strings in SU(N) gauge theories), since in that case the single-string states do not

mix (in the weak coupling limit) with any other states, so the partition function has an

interpretation involving purely the propagation of single-string states.

A specific case of this, which was considered in [7], involves worldsheets with the

topology of an annulus. Suppose that we consider a confining string in a Euclidean space, in

which one of the directions is compactified on a circle of circumference L (say, X0 ≡ X0+L).

We can now consider a string whose worldsheet is wrapped once around this circle, and

which has two boundaries separated by a distance R in another spatial direction (say,

boundaries at X1 = 0 and at X1 = R). For a confining string one example of this is the

correlation function of two Wilson loops, wrapped on the circle and separated by a distance

R. The partition function Zannulus(L,R) on such a worldsheet has two interpretations. On

one hand, we can view X0 as the “time” direction, and then the diagram is a one-loop

vacuum diagram for an open string of length R, which can be expressed as

Zannulus(L,R) =
∑

k

e−E
o
k(R)L, (2.5)

where the sum is over all open string states k of length R, with vanishing transverse mo-

mentum (since the ends of the open string are fixed), which have energies Eok(R). Note

that these energies depend only on R and not on L, since we interpret Z as a statistical

mechanical partition function; when we have fermionic states for the string this requires

that we put anti-periodic boundary conditions for the fermions in the X0 direction, oth-

erwise we have an extra factor of (−1)F . For confining strings in pure Yang-Mills theories

we do not expect to have any fermionic states so this is not relevant.

On the other hand, we can view X1 as the “time” direction. Then, we have a closed

string state (winding on a circle of circumference L), which is created at X1 = 0 from

some “boundary state” and is annihilated at X1 = R. The closed strings can have any

transverse momentum, since they propagate between two points with vanishing trans-

verse separation. In other words, if we allow for some transverse separation between the

two boundaries and integrate over it, we would sum over only zero transverse momentum

closed strings, so we have

∫

dx⊥Z
annulus

(

L,
√

R2 + x2
⊥

)

=
∑

n

|vn(L)|2e−Ec
n(L)R, (2.6)

– 7 –
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where the sum is over all closed string states n with zero transverse momentum, vn(L) are

the overlaps of these states with the boundary state, and Ecn(L) are their energies. It was

shown in [7] that this implies that

Zannulus(L,R) =
∑

n

|vn(L)|22R
(

Ecn(L)

2πR

)(D−1)/2

K(D−3)/2(E
c
n(L)R), (2.7)

where Kν(x) is a Bessel function. The same equation may be derived from a string theo-

retic computation of the partition function for a string wrapping the annulus along the lines

of [10] (see also [11]), allowing arbitrary energies for the states in the closed string channel.

For very large L and R, the higher derivative corrections to the effective action are

negligible, and the energy levels will be those of a free string in D dimensions; this implies

that the closed string energy levels are all of the form

Ec,Ln = Ec,0n (L) + Ec,1n (L) + · · · = TL+
4π

L

[

− 1

24
(D − 2) +Nn

]

+ · · · (2.8)

if the state n arises at excitation level Nn ∈ Z (this is actually the excitation level for both

the right-moving and the left-moving states on the worldsheet; the two are equal for any

state that has an overlap with the boundary state). The first term is the classical string

energy, and the second is the well-known Lüscher term [6]. We expect the higher deriva-

tive corrections to the action to give corrections to (2.8) which, on dimensional grounds,

begin at order 1/L3; in particular, in a flat-space string theory, which is well-described by

the Nambu-Goto action, the exact formula for the energy levels of zero-momentum states

is given by

Ec,NGn (L) =

√

(TL)2 + 8πT

[

− 1

24
(D − 2) +Nn

]

, (2.9)

but we do not expect this equation to be exact for general confining strings.2 Similarly,

for large R the open string energy levels take the form

Eok(R) = Eo,0k (R) + Eo,1k (R) + · · · = TR+
π

R

[

− 1

24
(D − 2) +Nk

]

+ · · · , (2.10)

for levels Nk ∈ Z, with corrections starting at order 1/R3. Note that the form of the effec-

tive action guarantees that closed string energy levels have an expansion involving purely

odd powers of 1/L. For open strings the same is true if there are no boundary terms, but

for strings stretched between a quark and an anti-quark there could be boundary terms

which introduce also even powers of 1/R.

The partition function on the annulus that we compute must be consistent with the

two forms (2.5) and (2.7) above. The partition function for large L,R in both channels

may be expanded in a power series in inverse powers of L and R (multiplying the expo-

nential terms), which is really an expansion in E1, E2, . . . (where we take Ek(R) to scale

2In particular, we expect the ground state energy of the winding string to go to zero at L = 1/TH where

TH is the Hagedorn temperature, and we expect this temperature in general to be smaller than the one of

the Nambu-Goto string, TNG
H =

p

3T/(D − 2)π. This is confirmed by lattice simulations [12].
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as 1/R2k−1). The comparison to the effective field theory partition function turns out to

be simplest if we expand around an expression in which we write both E0 and E1 in the

exponent, but expand just around E0 in other places, since this is what we will find in the

effective field theory partition function in the free field approximation. In the “open string

channel” we then have at the leading non-trivial order

Zannulus(L,R) =
∑

k

e−(Eo,0
k (R)+Eo,1

k (R))L(1 − Eo,2k (R)L+ · · · ). (2.11)

So, in this channel, the leading order correction to the partition function should look like L

times a sum over corrections to energies (scaling as 1/R3) times exponentials. In the “closed

string channel” we obtain to leading non-trivial order (up to two inverse powers of lengths)

Zannulus(L,R) =
∑

n

|vn(L)|2
(

Ec,0n (L)

2πR

)(D−2)/2

e−(Ec,0
n (L)+Ec,1

n (L))R ·
(

1 − Ec,2n (L)R +
D − 2

2

Ec,1n (L)

Ec,0n (L)
+ · · ·

)

·
[

1 +
(D − 2)(D − 4)

8Ec,0n (L)R
+ · · ·

]

. (2.12)

We will analyze this expansion in detail in the next section. The leading correction here is

more complicated, involving terms scaling as R/L3, 1/L2 and 1/LR. A 1/L2 contribution

can also arise by expanding vn(L) in inverse powers of L.

The method of [7] to constrain the partition function is to first compute the partition

function coming from the effective action described in the previous subsection, and then

to try to match it to the equations in the previous paragraph (for some corrections to

the energy levels and to vn(L)). Of course, the partition function should only match for

states whose excitation energies are much smaller than the scale m where the effective

action breaks down, but this is true for any state for large enough L and R. In [7] this

matching was performed for the 4-derivative terms, by expanding the partition function to

leading order in c2, c3, and writing it using exponentials either of L/R or of R/L (modular

transformation properties of the resulting partition function can be used to relate the

two). We will review this computation in section 3. In the “open string channel” this gave

reasonable results for any c2, c3 (with some specific corrections to open string energy levels

at order 1/R3, linear in c2 and c3). However, in the “closed string channel”, the corrections

of order 1/LR, coming from the last parentheses in (2.12), matched only when

(D − 2)c2 + c3 =
D − 4

8T
. (2.13)

Thus, they concluded that the effective action is only consistent when this constraint is

satisfied. When it is satisfied, the correction takes the form (2.12) and one can compute the

leading corrections to the energy levels (and to vn(L)) in both the open and closed string

channels. Note that the Nambu-Goto action (whose quantum open string spectrum was

computed in [13]), with cNG
2 = 1/8T and cNG

3 = −1/4T , satisfies this constraint, as it has to

since one can check that it leads to a partition function on the annulus which is consistent

in both channels (to all orders). For D = 3, since there is only a single four-derivative
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coefficient, the constraint (2.13) implies that the four-derivative action must agree with

the Nambu-Goto action. For D > 3 there is one free coefficient remaining, so it seems that

the action (and the energy levels) need not agree with Nambu-Goto at the four-derivative

order (namely, for corrections to energies of order 1/R3 or 1/L3). In section 3 we will

extend the considerations of this paragraph to the next order in the derivative expansion.

In [7] they also showed that no boundary terms can contribute up to two-derivative

order; here, as mentioned above, we will not discuss the boundary terms, but we will just

take them to zero (assuming that there is some consistent boundary of the confining string

which gives this). It would be interesting to generalize our analysis to obtain constraints

on boundary terms involving higher derivatives than considered in [7].

A similar analysis may be performed by considering a string wrapping a torus in space-

time, which we will take for simplicity to involve two orthogonal periodic coordinates,

X0 ≡ X0 + L and X1 ≡ X1 + R. Obviously, the partition function in this case must

be invariant under L ↔ R (modular invariant), and this is automatically satisfied for any

effective action. However, it must also have an interpretation as the sum over closed string

states winding the X1 circle, propagating for a time L, or the other way around. By similar

arguments to the ones above (or by a simple generalization of the computation of the torus

partition function in [10], see also [14]), this partition function must take the form (up to

an unimportant constant depending on the radii and on the transverse volume)

Ztorus(L,R) =
∑

n

R

(

Ecn(L)

R

)(D−1)/2

K(D−1)/2(E
c
n(L)R), (2.14)

where the states summed over here are all the closed string states winding once around

the circle with zero transverse momentum (including states with different numbers of left

and right-moving excitations on the worldsheet, which carry a non-zero momentum around

the worldsheet). Again, we can expand this in inverse powers of L and R, and compare

to the expressions that we obtain from the low-energy effective action. Here we have less

freedom (since there are no unknown coefficients vn(L)), so we will find more constraints.

We will see in section 3 that at the leading non-trivial order this will allow us to uniquely

determine c2 and c3 for any D, such that they must equal the Nambu-Goto values, and we

will extend the analysis to the next order as well.

Before we conclude this section, it is important to stress the assumptions that go into

the constraints discussed above on the string effective action. One assumption is that the

string has a limit in which it is weakly coupled. If the string is not weakly coupled, there is

no physical observable that gets contributions only from single-string states as we assumed

above, since there is generically mixing between single-string and multi-string states. It is

not clear how this mixing affects the energy levels of winding states; it would be interesting

to analyze this. Thus, for confining SU(N) strings, we expect the effective action on

the worldsheet to obey the constraints above (since there is a large N limit where the

string theory is weakly coupled), but for finite N the energy levels obtain corrections from

mixing so there may be deviations from the large N predictions derived above. A second

assumption, which goes into the way we regularize the loop diagrams in the worldsheet

effective action, is that there is no dependence of the results on any UV cutoff scale. This
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assumption is presumably true for solitonic strings that correspond to standard weakly

coupled string theories, since in such theories there is a gauge where the worldsheet theory

is conformal, and there is no dependence on any high energy scale. However, generic

solitonic strings may not correspond to any weakly coupled string theory, and for such

strings it is not clear that physics at high energies decouples from the low-energy physics

captured by the effective action. Thus, our predictions for the form of the effective action

apply to confining strings (in the fundamental representation) in large N gauge theories,

but a priori it is not clear whether they should hold more generally or not.

Even with these assumptions it seems that we are getting constraints for “free”, but

we are really getting them by using the symmetries of the problem. Specifically, our the-

ories have a SO(D − 1, 1) Lorentz symmetry, but the effective action on the string is only

explicitly invariant under an SO(D− 2) subgroup. The derivations of the expressions (2.7)

and (2.14) use the rotation symmetry between the transverse coordinates and the coor-

dinate which the string propagates in, so our constraints really test this SO(D − 2, 1)

symmetry (this was explicitly shown in [8] for the annulus). It would be interesting to

derive the constraints above directly from Ward identities for the broken symmetries, and

to check whether additional constraints may be derived by using the full Poincaré sym-

metry. Note that the Nambu-Goto string, whose full spectrum is not Poincaré-invariant

(for D 6= 26, since the massive states do not all lie in representations of SO(D − 1)), still

satisfies all the constraints that we discuss here.

A different type of constraint on the effective action was considered by Polchinski and

Strominger in [2]. They used the fact that the confining string is expected to be (at least

in the large N limit [1]) a fundamental string in some curved background. This implies

that one can go to a “conformal gauge” in which the theory on the worldsheet of the string

must be a conformal theory with a specific central charge (c = 26 if it is a bosonic string,

or c = 15 if it is a superstring). They attempted to write down such a conformal theory for

the D scalar fields describing the position of the string in RD (since they use a conformal

gauge they cannot go to static gauge, so the action involves all the coordinates). The action

they wrote down is singular (it involves negative powers of (∂X · ∂X)), but becomes non-

singular when expanded around a long string configuration of the type described above;

we can interpret this by saying that their action may be derived by integrating out all

the other degrees of freedom on the string, and this integrating out is useful (gives a

non-singular action) when expanding around a long string configuration in which these

additional degrees of freedom are heavy. In this formalism an expansion similar to, but not

identical to, the derivative expansion described above was obtained in [2]. They showed

that the leading correction to the free action in this expansion is uniquely determined, and

it was later shown in [3, 4] that, for any D, this implies that the leading correction to the

string ground state energy (at order 1/L3) is the same as in the Nambu-Goto action. Of

course, this, as well as the claim that the leading correction to the effective action is unique

(and equal to Nambu-Goto), is consistent with the constraints we described above.

It is not clear to us precisely how to relate the effective action in the Polchinski-

Strominger formalism to the one in the Lüscher-Weisz formalism — it would be very

interesting to understand this. In particular the Polchinski-Strominger formalism seems
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to involve the full Poincaré symmetry (since it is only valid for a string with the critical

central charge) which is not used in the Lüscher-Weisz formalism. It is not completely

obvious to us if the Polchinski-Strominger formalism is valid or not (namely, if integrating

out the other fields on the string indeed always gives an effective action of the form that

they assume). If it is valid, it would be interesting to extend it to the next order, in order

to see if this leads to more or to less constraints on the corrections to the effective action

than the ones that we derive from the Lüscher-Weisz formalism. This is not clear, since

the assumptions that underlie the two formalisms do not seem to be identical.

2.3 The effective string action in weakly curved holographic backgrounds

As already mentioned above, we believe that the confining string (in the fundamental

representation) in a large N gauge theory is equivalent to a weakly coupled fundamental

string in some background, by a generalization of the AdS/CFT correspondence [15–17].

In principle, given such a background, we can write down the string action for a long string

configuration in static gauge.3 As mentioned above, we expect that all degrees of freedom

except the (D − 2) Nambu-Goldstone bosons will have some mass m in this background,

and, thus, we can integrate them out to obtain the effective action below the scale m.

Recall that already for a string in flat space, the Nambu-Goto action is an effective action

expanded in derivatives divided by the string scale Ms ∼
√
T so we expect it to break

down (or become strongly coupled) at this scale. For a generic gauge theory, with no

dimensionless parameters, we expect m ∼Ms. This means that the effective action at the

scale m will generically be strongly coupled, and it is not clear how to integrate out the

degrees of freedom at this scale.

However, for a special class of gauge theories, the dual string background is weakly

curved (such a background for a superstring is necessarily ten dimensional). Several exam-

ples of this class were discovered in the last decade [18–21]. The fact that the background

is weakly curved means that the string tension is much larger than the typical curvature

scale of the background; the latter determines the masses of the additional fields on the

worldsheet, so that in such a case we have m2 ≪ T . The effective theory on the worldsheet

at the scale m is then weakly coupled — the dimensionless coupling constant is m2/T – and

we can perturbatively integrate out the massive fields to obtain the low-energy effective

action of the massless fields. We will do this in detail in section 6. In these backgrounds we

naively expect the effective action to be equal to the Nambu-Goto action, with corrections

that are a power series in m2/T (coming from loops of massive string states). Note that

usually when massive states are integrated out, the corrections to the effective action go

as a negative power of their mass, while here the corrections go as a positive power of the

mass. This is because the massless limit corresponds exactly to a string in flat space (the

Nambu-Goto action), so the deviations from this limit must go as a positive power of the

mass; in practice we will see that this arises because the couplings of the additional fields

to the massless fields will contain powers of m.

3In the last 12 years it has been realized that also non-confining gauge theories have a string theory

description. However, in these theories there is no classical long closed string configuration of the type we

analyze in this paper, and no expansion in the inverse string tension.
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As mentioned above, in typical gauge theories (like pure Yang-Mills theory) we do not

expect m to be small, so we cannot perform such a power series expansion of the corrections.

Our goal will be to see which terms in the action deviate from the Nambu-Goto form in

the regime of small m and which do not; it seems plausible that any terms that are allowed

to deviate, will do so already at leading order, and thus we conjecture that the same terms

should deviate from Nambu-Goto also in general gauge theories (though in general we

expect any allowed deviations to be of order one in string units). We will find that indeed

our one-loop effective action will take the most general form allowed by the constraints

discussed in the previous subsection, up to one additional constraint that it satisfies.

A special example of such a computation of corrections to the action, which was already

analyzed in the literature, is the computation of the effective tension of the string; the

classical tension receives corrections at one-loop from integrating out the massive fields,

and it was found in [22] that the corrected tension takes the form

T ′ = T +
1

8π

(

∑

fermions F

m2
F log(m2

F ) −
∑

bosons B

m2
B log(m2

B)

)

, (2.15)

where T is the classical tension, and mB and mF are the masses of the bosonic and

fermionic degrees of freedom on the worldsheet, respectively. Note that we generally expect

to have (10−D) massive scalars on the worldsheet (since we are dealing with a string in a

background which is ten dimensional), and 8 massive fermions (since this is the number of

physical fermions living on a superstring), though in some cases some of these fields may

be massless (and do not contribute to (2.15)). Note also that the logarithms appearing

in this formula are really of the form log(m2/Λ2) where Λ is the UV cutoff, so in order

for (2.15) to be finite, it must be the case that
∑

bosons B

m2
B =

∑

fermions F

m2
F . (2.16)

This is true in all known holographic backgrounds, and it seems to be necessary to obtain

finite (cutoff-independent) results for various worldsheet computations (as we expect, since

the theory in conformal gauge is manifestly independent of the cutoff). We will assume

from here on that equation (2.16) holds.

In all known examples of confining string backgrounds, we actually find more massless

scalars than expected on the worldsheet. This is because in these backgrounds the confining

string lives in some “IR” region of space, and in this region there is some p-dimensional

sphere that the string is localized on (and there is an exact or approximate SO(p + 1)

symmetry), which generally carries some non-zero flux which stabilizes the background.

The string is localized on this sphere, meaning that it has p additional massless fields ej on

its worldvolume corresponding to its position on the sphere. Generally, upon integrating

out the massive fields (including the fermions), the effective action of these fields looks like

a sigma model on Sp. So, we expect that perturbatively the ej fields will remain massless,

but that non-perturbatively this sigma model will develop a mass gap, at some scale Λ̃

which is exponentially smaller than the scale m (the radius of the sphere is of order 1/m,

so we expect Λ̃ ∼ m exp(−CT/m2) for some constant C). In such a case, in the effective
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action for length scales between 1/Λ̃ and 1/m we should include the e fields as well, and

only in the effective action at length scales above 1/Λ̃ we can integrate them out. However,

the field theory of the e’s is strongly coupled, so this will lead to various corrections to the

action depending on the scale Λ̃ that we do not know how to compute.

Our attitude will be to ignore the e fields in our computations, and only to integrate

out the fields which obtain a mass at the curvature scale m. For the effective action between

the length scales 1/Λ̃ and 1/m, this means that we will reliably compute the terms in the

effective action that depend only on the Xi, but that the full effective action will also

contain the e fields and various couplings involving them (which we will not compute,

though they can easily be computed). In the effective action at very low energies (below

Λ̃), there will be additional terms coming from integrating out also the e’s, which we do

not know how to compute. However, these terms will depend on Λ̃ rather than on the scale

m, so they will be parameterically separated from the terms that we do compute. Namely,

we compute all the terms in the effective action that depend on the scale m and not on

other scales. Our main interest will be in seeing for which terms in the effective action

deviations from Nambu-Goto exist; if we find a deviation from Nambu-Goto associated

with the scale m then we can be sure that this deviation remains non-vanishing also after

adding the contributions from the e fields, since their contributions involve different scales.

Since we are only interested in effects depending on m, we can also ignore other con-

tributions to the effective action which are independent of m, such as effects coming from

ghost loops and loops of the worldsheet metric (at least at the one-loop order that we

will be working in). Since we ignore metric loops, it will not matter whether we work in

the Polyakov or in the Nambu-Goto formalism. However, the difference between the two

formalisms may be important at higher orders.

Note that in the holographic description, we can introduce a boundary to the string

worldsheet in two ways. One possibility is to compute a Wilson loop (or a correlation

function of Wilson loops); in this case the fundamental string worldsheet ends on the

boundary of the higher dimensional space (it goes to infinity in the radial direction) at the

position of the Wilson loop [23, 24]. The worldsheet in this case does not sit just in the

“IR” region of space, so the action in this case may well have boundary terms which depend

on what happens throughout the holographic dual space-time. The second possibility is

that the string can end on a D-brane; D-branes can describe various objects in a confining

string theory, including dynamical quarks and domain walls. In this case, if the D-brane

extends into the “IR” region of space so that the open string can be completely localized

in this region, we do not expect to get any boundary terms on the worldsheet, since there

are no such terms for a string ending on a D-brane.

2.4 A special class of holographic backgrounds

In general weakly curved holographic backgrounds, we obtain small corrections to the

Nambu-Goto action as described above. In these backgrounds the confining string is de-

scribed as a fundamental string moving in some curved space with various p-form fields

(typically including Ramond-Ramond (R-R) fields) turned on. We expect some such back-

ground (weakly curved or not) to correspond to any large N gauge theory in the ’t Hooft
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limit. However, there is also a class of large N confining gauge theories whose confining

string is not well-described as a weakly coupled fundamental string as above; these do not

arise from a ’t Hooft large N limit but from a different type of limit. As an example of

this, consider the background of N D5-branes compactified on a two-sphere, in the limit

where the theory on the D5-branes is decoupled from the string theory in the bulk; the

gravity solution describing this background was found by Chamseddine and Volkov in [25]

and interpreted in this way by Maldacena and Nuñez in [19]. In the decoupling limit the

5+1 dimensional effective Yang-Mills coupling g6 is kept fixed, and there is a dimensionless

parameter corresponding to the size of the two-sphere in units of the ’t Hooft coupling g2
6N .

(Of course, the six dimensional Yang-Mills theory requires some UV completion, and this

is provided in this decoupling limit by a “little string theory”.) In the limit where this

size is small, the background is weakly coupled in an S-dual frame to the original frame,

such that the confining string is best described by a D-string moving in a weakly curved

background.4 At first sight this case seems very similar to the case of a fundamental string;

the effective action on the D-string, which is the DBI action, is essentially the same as the

Nambu-Goto action, and again there are some fields on the long D-string worldsheet that

are massive and that may be integrated out. However, the fact that the D-string action

has an inverse string coupling 1/gs multiplying it, means that corrections from loops of

the massive states are down by powers of gs compared to the classical action. Additional

corrections of the same order come from string diagrams of higher genus, which have not

been computed (recall that the DBI action just captures the string disk diagrams). So, in

this case the effective action on the confining string worldsheet, at leading order in gs, is

precisely the same as the Nambu-Goto action, with no deviations at all. At the next order

in gs there will be deviations, but computing them requires higher genus diagrams so it is

rather complicated. This case is thus rather different from the standard confining string

case discussed in the previous subsection, where we expect any allowed deviations from

Nambu-Goto to appear already at leading order in gs ∼ 1/N .

2.5 A brief review of lattice results

The effective action of confining strings on the lattice has been studied in the last few years

with increasing accuracy (see [26] for a review of results before the ones we explicitly discuss

below). In particular, for the three dimensional pure Yang-Mills theory, very precise results

have been obtained for the spectrum of closed confining strings in large N SU(N) gauge

theories (in the fundamental representation) winding on a circle of circumference L [27, 28].

For the ground state energy, it has been found that it agrees with the Nambu-Goto result

at order 1/L (the Lüscher term) and is consistent with it at order 1/L3, and that if there

is a deviation at order 1/L5 its coefficient is very small (so that the deviation may well

be at a higher order in 1/L). Excited states seem to again agree with Nambu-Goto at

orders 1/L and 1/L3, but to deviate more from it at higher orders, perhaps already at

4There is also a range of values of the size for which the IR region of the background is weakly coupled

in the original frame, and there the confining string is described by a fundamental string, but the coupling

becomes strong away from the IR region. For this range of values the confining string behaves in the generic

way that we expect for large N gauge theories, see section 5.3.
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order 1/L5 (the deviations seem larger than those of the ground state, but the lattice data

is not precise enough to determine at which order it occurs). In 3 + 1 dimensions the

simulations of large N gauge theories again find agreement with Nambu-Goto for large L,

but they are not yet precise enough to tell at what order deviations from Nambu-Goto

arise. Simulations of interfaces in the 2 + 1-dimensional Ising model similarly show good

agreement with Nambu-Goto (see, for instance, [29] and references therein), and again they

are not yet precise enough to tell at what order deviations from Nambu-Goto arise.

Recently, 2 + 1 dimensional confining strings in higher representations (“k-strings”)

were also studied [30, 31] in the large N limit and compared to Nambu-Goto, and it was

found that they exhibit larger deviations from Nambu-Goto (which may already start at

order 1/L5) for all states, including the ground state. However, it is subtle to interpret

these results, for the following reason. In the large N limit (with fixed k), the binding

energy of k fundamental strings to form a k-string goes to zero as 1/Nα; some theoretical

arguments suggest that α = 2, while other arguments (see, for instance, [32]) and lattice

results suggest that α = 1. This means that in the large N limit there are (at least)

(k − 1)(D − 2) light modes on the worldvolume of a k-string, whose mass goes to zero in

the large N limit as 1/Nα/2. The general constraints above concerning the form of the

effective action are valid only at length scales larger than the inverse of any mass of a

worldsheet field (and also large enough so that there is no mixing of the k-string states

with states of k fundamental strings); thus, they only apply for length scales bigger than

Nα/2/
√
T , and it is not clear if these scales are accessed by the simulations yet (with

enough precision to extract the 1/L5 corrections to energy levels). It would be interesting

to analyze k-strings at longer scales, to see if they obey our constraints at these scales.

In another recent paper [33], the energy of the ground state of a confining string in

a 2 + 1 dimensional system arising from a continuum limit of percolation was numerically

computed, and found to agree again with Nambu-Goto at orders 1/L and 1/L3, but to

significantly deviate from it at order 1/L5 (though it is not clear if there are enough data

points within the range where the 1/L expansion can be trusted in order to be able to

reliably compute this). Since this model does not have any obvious large N limit where

it corresponds to a weakly coupled string theory, it is not clear if the general arguments

above apply to it or not; as we will see below, the results of [33] seem to contradict the

general predictions for an effective action of a string which has a weakly coupled limit.

3 The effective theory on a confining string

In this section we compute the partition function for the general effective action (2.1)–

(2.4) at six derivative order, both on the annulus and on the torus. The computation is

perturbative, and the partition function is a power series in (
√
TL)−1 and (

√
TR)−1. We

obtain expressions such as the Dedekind function and its derivatives. This allows us to

expand the results both in exponents of L/R (times powers) and in exponents of R/L

(times powers). On the annulus this corresponds to the closed and open string channels,

while on the torus both limits correspond to closed string partition functions. We require

the partition function to have the form (2.7) for the annulus and (2.14) for the torus, when
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expanded in the long string limit. From this we can extract the open and closed string

spectrum. Most importantly, we discover that the coefficients c2, . . . , c7 are not arbitrary.

In each subsection we start by writing the general form of the partition function, given

in section 2, which is relevant at that order. We then compute, perturbatively, the partition

function, using the action S = S0 + S2 + S4 + S6, and compare the two.

3.1 Partition function at O(T 0)

To leading order, the expressions (2.5), (2.7) and (2.14) take the following forms:

Zann. =
∞
∑

k=0

ωke
−(Eo,0

k +Eo,1
k )L =

∞
∑

n=0,2,4,...

|v0
n|2
(

TL

2πR

) 1
2
(D−2)

e−(Ec,0
n +Ec,1

n )R,

Ztor. =
∞
∑

n=0

√

π

2

(

TL

R

) 1
2
(D−2)

ωtor.
n e−(Ec,0

n +Ec,1
n )R. (3.1)

The summations are over energy levels n = NL + NR, where NL(R) are the number of

left(right)-moving excitations on the worldsheet. ωn is a weight factor corresponding to

the number of states at each energy level (we join together the contributions from different

states with the same energies, anticipating a degeneracy in the leading order). The annulus

boundary carries zero momentum in the compact direction, and so the annulus partition

function contains only states with an equal number of left-moving and right-moving exci-

tations, which explains the summation over even n in our equations. We use the closed

(open) energy level expansion E
c(o)
n = E

c(o),0
n +E

c(o),1
n +· · · , and vn(L) = v0

n(L)+v1
n(L)+· · ·

are the overlaps between the boundary state and the closed string states at level n. More

precisely, |vn|2 =
∑

i∈n |vn,i|2, where vn,i is the overlap with a specific state i at level n.

From the worldsheet effective action point of view, we derive the partition function at

this order from the free action S = S0 +S2. It is convenient to write the partition function

using the definitions

q ≡ e2πiτ , q̃ ≡ e2πiτ̃ ,

τann. = i
L

2R
, τ̃ann. ≡ − 1

τann.
= i

2R

L
, τtor. = i

L

R
, τ̃tor. = i

R

L
. (3.2)

The partition function (up to constants including the transverse volume in the torus

case) is [9]:

Zann.
0 = e−TLRη(qann.)2−D =

∞
∑

k=0

ωke
−TLR−πL

R
[− 1

24
(D−2)+k]

=

(

2R

L

)
2−D

2
∞
∑

n=0,2,4,...

ωann.
n e−TLR−

4πR
L

[− 1
24

(D−2)+ n
2
],

Ztor.
0 = R2−De−TLRη(q̃tor.)2(2−D) = R2−D

∞
∑

n=0

ωtor.
n e−TLR−

4πR
L

[− 1
24

(D−2)+ n
2
]. (3.3)

– 17 –



J
H
E
P
0
6
(
2
0
0
9
)
0
1
2

Figure 1. The 2-loop contribution to the partition function at O(T−1).

Here ωn are weight factors, proportional to the number of states at each energy level n,

and we also used the modular properties of the Dedekind eta function,

η(q) ≡ q1/24Π∞
n=1(1 − qn), η(q) =

√

i

τ
η(q̃). (3.4)

By matching (3.3) and (3.1) we find the energies and overlap functions to first order. For

the annulus,

Ec,0n = TL, Ec,1n =
4π

L

[

− 1

24
(D − 2) +

n

2

]

,

|v0
n|2 = ωann.

n

(π

T

)
1
2
(D−2)

, (3.5)

and the open string energies are given in (2.10). The same closed string energies appear in

the torus partition function, so that the annulus and torus computations are consistent.

3.2 Partition function at O(T−1)

We carry on with the expansion of the partition function to order O(T−1). We explicitly

use our results from the previous subsection. By expanding equations (2.7) and (2.14) we

expect to obtain expressions of the form

Zann. =

∞
∑

n=0,2,4,...

|v0
n|2
(

TL

2πR

)
1
2
(D−2)

e−(Ec,0
n +Ec,1

n )R

{

1 − [Ec,2n ]ann.R+
|v1
n|2

|v0
n|2

+
2π(D − 2)

TL2

[

− 1

24
(D − 2) +

n

2

]

+
(D − 2)(D − 4)

8TLR
+ · · ·

}

,

Ztor. =
∞
∑

n=0

√

π

2

(

TL

R

)1
2
(D−2)

e−(Ec,0
n +Ec,1

n )Rωtor.
n

{

1 − [Ec,2n ]tor.R+
D(D − 2)

8TLR

+
2π(D − 2)

TL2

[

− 1

24
(D − 2) +

n

2

]

+ · · ·
}

. (3.6)

The notation [Ec,2n ] indicates there is an averaging over all states at level n, for the torus

with equal weight and for the annulus with weight |vn,i|2.
We now compute the partition function of the action S = S0+S2+S4. There are two 2-

loop bubble diagrams (see figure 1), with the vertices c2 and c3. Two possible contractions

in each diagram lead to expressions proportional to (D−2)2 and (D−2). The computation

of the diagrams gives

〈S4〉0 = c2[(D − 2)2 × I1 + 2(D − 2) × I2] (3.7)

+c3[(D − 2) × I1 + ((D − 2)2 + (D − 2)) × I2],
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with

I1 =

∫

d2σ∂α∂
α′

G∂β∂
β′

G, I2 =

∫

d2σ∂α∂β′G∂α∂β
′

G. (3.8)

Here G = limσ→σ′ G(σ, σ′) is the propagator of the free field Xi in coordinate space. We

compute the diagrams in detail in appendix A, as originally done in [7, 9]. The computation

is rather straightforward, apart from the need to carefully use a consistent zeta function

regularization. We find the following result for the annulus, expressed using the Eisenstein

series En(q) and their derivatives Hn,k(q), all defined in section A.1:

Iann.
1 =

2π2L

R3
H2,2(q

ann.) = − 1

LR
+

2π

3L2
E2(q̃

ann.) +
32π2R

L3
H2,2(q̃

ann.), (3.9)

Iann.
2 =

π2L

R3

[

2

(24)2
E2

2(qann.) +H2,2(q
ann.)

]

=
16π2R

L3

[

2

(24)2
E2(q̃

ann.)2 +H2,2(q̃
ann.)

]

.

For the torus we find (a similar computation for the Nambu-Goto action was performed

in [14])

Itor.
1 =

1

RL
,

Itor.
2 =

π2R

18L3
E2

2(q̃tor.) − π

3L2
E2(q̃

tor.) +
1

RL
. (3.10)

The partition function at this order is given by,

Z(q) = Z0(q)(1 − 〈S4〉0)

∝
∞
∑

n=0

ωne
−R(Ec,0

n +Ec,1
n ){1 − I1[(D − 2)2c2 + (D − 2)c3]

−I2[(D − 2)(D − 1)c3 + 2(D − 2)c2]}. (3.11)

In the annulus case we see that the corrections to the open string partition function are

all energy corrections proportional to L/R3, as expected from (2.5). Plugging our re-

sults (3.9), (3.10) in (3.11) gives the following partition functions for closed strings,

Zann. =

(

L

2R

)
1
2
(D−2) ∞

∑

n=0,2,4,...

ωann.
n e−R(Ec,0

n +Ec,1
n ) ·

×
{

1 − π2R

18L3
E2(q̃

ann.)2[(D − 2)(D − 1)c3 + 2(D − 2)c2]

+

(

1

LR
− 2π

3L2
E2(q̃

ann.)

)

[(D − 2)2c2 + (D − 2)c3]

−16π2R

L3
H2,2(q̃

ann.)[(D − 2)(D + 1)c3 + 2(D − 2)(D − 1)c2]

}

,

Ztor. = R2−D
∞
∑

n=0

ωtor.
n e−R(Ec,0

n +Ec,1
n ) ·

{

1 +

(

π

3L2
E2(q̃

tor.) − π2R

18L3
E2

2(q̃tor.)

)

×[(D − 2)(D − 1)c3 + 2(D − 2)c2] −
1

RL
(D − 2)D(c3 + c2)

}

. (3.12)
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We can now compare our result to (3.6). By looking at the ground state (n = 0) we find

the following constraint from the 1
LR term in the annulus partition function [7]:

D − 4

8T
= (D − 2)c2 + c3, (3.13)

and we also find,

[Ec,20 ]ann. =
π2

18L3
(D − 2)[(D − 1)c3 + 2c2],

|v1
0 |2

|v0
0 |2

= − 2π

3L2
(D − 2)((D − 2)c2 + c3). (3.14)

Comparing other states does not give us additional constraints, as shown in [7].

The result from the torus is consistent with the results above, and we also get one

additional constraint due to the fact that there are no unknown overlap functions, so we

can compare both the 1
LR and the 1

L2 terms:

c2 + c3 = − 1

8T
,− D − 2

4T
= (D − 1)c3 + 2c2,

[Ec,20 ]tor. =
π2

18L3
(D − 2)[(D − 1)c3 + 2c2] = − π2

72TL3
(D − 2)2. (3.15)

There are two independent constraints in total, which completely fix the effective action

at this order to be the Nambu-Goto action for any D:

c2 = cNG
2 =

1

8T
,c3 = cNG

3 = − 1

4T
. (3.16)

In particular, this implies that the partition function (or any other physical observable) is

constrained to be the one given by the Nambu-Goto action to this order. Again one can

check that higher n’s do not give additional constraints, but just give formulas for [Ec,2n ]tor.
for each level n.

3.3 Partition function at O(T−2)

At order O(T−2) there are numerous contributions to the partition function. We explicitly

write only the unknown parameters, namely [Ec,3n ] and |v2
n(L)|2. All other terms at this

order, such as [(Ec,2n )2], were already determined in the previous subsection to be the same

as in the Nambu-Goto partition function. We then have,

Zann. =

(

TL

2πR

) 1
2
(D−2) ∞

∑

n=0,2,4,...

|v0
n|2e−R(Ec,0

n +Ec,1
n )

{

· · · − [Ec,3n ]ann.R+
|v2
n(L)|2
|v0
n|2

+ · · ·
}

,

Ztor. =

√

π

2

(

TL

R

) 1
2
(D−2) ∞

∑

n=0

e−R(Ec,0
n +Ec,1

n )ωtor.
n {· · · − [Ec,3n ]tor.R+ · · · }. (3.17)

As in the previous subsections we compute the partition function to six derivative

order, given by the following action,

S = S0 + S2 + S4 + S6. (3.18)
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Figure 2. The 3-loop contribution to the partition function. Diagrams (1) and (3) are the two

contributions to 〈S2

4
〉 and diagram (2) is a single vertex diagram appearing in 〈S6〉.

The partition function is then,

Z(q) = Z0(q)(1 − 〈S4〉0 +
1

2
〈(S4)

2〉0 − 〈S6〉0). (3.19)

Diagrammatically, the c4 contributions to 〈S6〉 are two-loop diagrams similar to the ones

of the previous subsection, while the c6,7,8 contributions to 〈S6〉, and 〈S2
4〉, are three-loop

diagrams (see figure 2). We do not compute 〈S2
4〉 explicitly since we know from the previous

subsection that this contribution is constrained to equal its form in the Nambu-Goto action.

In particular, we know it will match all terms (such as [(Ec,2n )2]) which we did not write

in (3.17), and which do not get contributions from S6.

The computation of 〈S6〉, using the diagrams of figures 1 and 2, gives

〈S6〉 = c4[(D − 2)2I3 + 2(D − 2)I4] + c6[(D − 2)3I6 + 6(D − 2)2I7 + 8(D − 2)I8] (3.20)

+c7[((D − 2)3 + (D − 2)2 + 4(D − 2))I7 + 4(D − 1)(D − 2)I8 + (D − 2)2I6],

where

I3 =

∫

d2σ∂α∂
α′

∂β∂
β′

G∂γ∂
γ′G, I4 =

∫

d2σ∂α∂β∂
′
γG∂

α∂β∂γ
′

G,

I6 =

∫

d2σ∂α∂
α′

G∂β∂
β′

G∂γ∂
γ′G,

I7 =

∫

d2σ∂α∂′αG∂
β∂′γG∂

′
β∂

γG, I8 =

∫

d2σ∂α∂′βG∂
β∂′γG∂

γ∂′αG. (3.21)

In appendix A we obtain the following results for the annulus,

Iann.
3 = −4

π4L

R5
H2,4(q

ann.) = −4
π4L

R5

(

4R5

15πL5
E4(q̃

ann.) − 64R6

L6
H2,4(q̃

ann.)

)

,

Iann.
4 = −1

2
Iann.
3 , Iann.

6 =
3π3L

2R5
F (qann.) =

π3L

2R5

[

R5

πL5
− 4R4

π2L4
+

4R3

π3L3
+O(q̃)

]

,

Iann.
7 =

1

2
Iann.
6 , Iann.

8 =
1

4
Iann.
6 , (3.22)

where F (q) is defined in (A.2). There is an uncertainty O(q̃) in I6,7,8 because we computed

the q̃ expansion of F (q) numerically, as explained in detail in section A.5.

For the torus we find

Itor.
3 = Itor.

4 = 0,
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Itor.
6 = − 1

L2R2
,Itor.

7 = − 2π

3RL3
E2(q̃

tor.) − π2

18L4
E2

2(q̃tor.) − 1

L2R2
,

Itor.
8 = − π

RL3
E2(q̃

tor.) − π2

12L4
E2

2(q̃tor.) − 1

L2R2
. (3.23)

Using (3.22) and (3.23) in (3.20) we find

〈S6〉ann. = −4(D − 2)(D − 3)c4

[

4π3

15L4
E4(q̃

ann.) − 64π4R

L5
H2,4(q̃

ann.)

]

+[(D − 2)3(4c6 + 2c7) + (D − 2)2(12c6 + 10c7)

+(D − 2)(8c6 + 12c7)] ×
[

π2

8L4
− π

2RL3
+

1

2R2L2
+O(q̃)

]

,

〈S6〉tor. = − 1

L2R2
(c6 + c7)[(D − 2)3 + 6(D − 2)2 + 8(D − 2)]

−
(

π

3RL3
E2(q̃

tor.) +
π2

36L4
E2

2(q̃tor.)

)

[2c7(D − 2)3

+(D − 2)2(12c6 + 14c7) + (D − 2)(24c6 + 20c7)]. (3.24)

Putting this result in (3.19) and comparing to (3.17), we are able to find the deviations

of the spectrum and overlap functions from the Nambu-Goto (NG) case. We define for

convenience: ∆En = En − ENG
n , ∆ci = ci − cNG

i , where ENG
n and cNG

i refer to the NG

spectrum and coefficients. By comparing the 1
R2L2 term in the annulus partition function

in (3.24) and (3.17), we find the following constraint:

0 = (D − 2)3(4∆c6 + 2∆c7) + (D − 2)2(12∆c6 + 10∆c7)

+(D − 2)(8∆c6 + 12∆c7) . (3.25)

This constraint is enough to exclude any correction to the annulus partition function coming

from ∆c6,7. The coefficient c4 is not constrained. To compute the spectrum [Ec,3n ]ann. we

compare the R
L5 terms. We see that there is a deviation from Nambu-Goto only when

D > 3 and c4 6= 0. Since the expansion of H2,4 does not contain any constant term, we find

that there are deviations from the Nambu-Goto spectrum only for the excited states n > 0.

Note that this does not teach us about deviations of each state i from the Nambu-Goto

form (in its energy or overlap functions), but just that the sum over the states at each

energy level should give the results that we stated.

For the torus we find, by comparing the 1
L2R2 and 1

L3R
terms and using the consistency

of the Nambu-Goto expressions:

[∆Ec,3n ]tor. = 0,

0 = (∆c6 + ∆c7)[(D − 2)3 + 6(D − 2)2 + 8(D − 2)],

0 = (D − 2)3(2∆c7) + (D − 2)2(12∆c6 + 14∆c7)

+(D − 2)(24∆c6 + 20∆c7). (3.26)

On the torus, the partition function is exactly the Nambu-Goto partition function at this

order, and there are no contributions at all coming from ∆c4,6,7. This result is different
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from what we got for the annulus, but there is no contradiction since in the torus there

are contributions from all states, while in the annulus only some of the states contribute.

Therefore our results imply a relation between the sums of the corrections to the energies

of the states with the different possible momenta at each level. For instance, at the level

n = 2, there is one possible value (NL, NR) = (1, 1) for the annulus and 3 possible values

for the torus (NL, NR) = (0, 2), (2, 0), (1, 1). Thus, at this level we have the relation

∆E(1,1) = −2∆E(2,0) = −2∆E(0,2). If D = 3 or c4 = 0 then we obtain from the annulus

the additional relation ∆E(1,1) = 0, and the corrections to the energies of the (2, 0),(0, 2)

states also sum to zero.

The two constraints we find on c6,7 from the torus are linearly independent of each

other, but not of the annulus constraint, so there is a consistent solution. For D = 3, there

is only one independent term which is constrained to have the Nambu-Goto coefficient.

For D > 3 the general solution to the two constraints turns out to be independent of D,

c6 =
1

16T 2
, c7 = − 1

8T 2
, (3.27)

so that these coefficients also exactly agree with their Nambu-Goto values.

We summarize our results at this order:

For D = 3 there is a single parameter in the effective action, c6 which is constrained

to be the Nambu-Goto coefficient. Thus, the effective action to this order is the same as

the Nambu-Goto action, and all energy levels should agree with the Nambu-Goto levels up

to order 1/L5.

For D > 3, there are three independent terms: c4 which is unconstrained, and c6,7
which have two constraints and agree with their Nambu-Goto values. The annulus partition

function is generally affected by c4, but the ground state energy has no deviations from

Nambu-Goto at this order. The torus partition function at this order is not affected by c4,

and it is always equal to the Nambu-Goto partition function.

4 Superstrings in confining backgrounds

String theory in flat space-time is described, in the conformal gauge, by a free worldsheet

theory of massless degrees of freedom (d.o.f), corresponding to the worldsheet fluctuations.

In the general, non-flat, case there are background fields with non-trivial vacuum expec-

tation values. These fields couple to the worldsheet d.o.f and create interaction terms, so

that the worldsheet theory is no longer free.

In this section we will derive the worldsheet action for an infinite confining string, in a

specific class of holographic backgrounds. In these backgrounds, the confining string sits at

the minimal value of a radial coordinate. As we will see, in the static gauge, the worldsheet

action in such a configuration will contain massive and massless modes. We will then be

able, in later sections, to define an effective action which includes the massless fields only.

This action can be considered on different topologies, as in the previous section.

We begin with a description of the possible background fields and heuristically describe

their coupling to the worldsheet theory. This discussion should make clear how general our
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analysis is, and which backgrounds it fails to describe (examples of backgrounds which

are included in our analysis will be presented in the next section). Then, we present the

superstring action in these backgrounds, which was derived in [34, 35], and we derive its

Feynman rules. To avoid confusion, we summarize our notations in appendix B.

4.1 The backgrounds

The class of confining backgrounds which we consider (a sub-class of the general confining

backgrounds discussed in [36]) contains a cycle Sp
′

(with the topology of a sphere) that

vanishes smoothly at the minimal value of the radial coordinate, ρ0. At ρ0 the warp factor,

f(ρ), is minimal and so the string is forced to sit at this point. We can write the radial

direction and the Sp
′

coordinates together in Cartesian coordinates, ρ ∈ Rp′+1, and expand

the metric around the minimal point ρ0. Up to the order we will need in ∆ρ = ρ− ρ0, the

metric of the X and ρ coordinates is given by (in the string frame)

ds2

2πα′ = f(ρ)dX2 + dρ2 = f(ρ0)

(

1 +
f ′′(ρ0)

2f(ρ0)
∆ρ2

)

dX2 + dρ2. (4.1)

The string is stretched along the X directions, where the field theory lives. The effective

string tension in α′ units is T = f(ρ0). The coefficient of the ∆ρ2dX2 term is proportional

to the curvature R at the minimal point ,f
′′(ρ0)
f(ρ0) ∝ R

T , which is positive. The metric should

be smooth, so the warp factor is a function of ∆ρ2 and there are no odd powers appearing

in the expansion.

Expanding the metric perturbatively near the minimal point is valid when the curva-

ture is small compared with the string tension, R ≪ T . This limit often corresponds to a

large ’t Hooft coupling limit in the dual field theories. In the static gauge, the quadratic

part of the warp factor will create worldsheet masses (and interaction terms) for the ρ coor-

dinates. This is rather intuitive, as the curvature suppresses excitations in the ρ directions,

and in the language of the worldsheet theory causes these fields to become heavy.

There is usually also another compact p dimensional subspace, with a radius which

scales like a power of N . As discussed in section 2, we will not take these coordinates into

consideration. However, these compact subspaces are stabilized by some flux which they

carry, and this flux will appear in our computations. Since the geometry is not flat, it is

convenient to choose for these coordinates an appropriate vielbein (ea · eb = δab) to work

with. In this frame the volume form is always proportional to the antisymmetric tensor,

and is not coordinate dependent.

The metric which we will use is thus (rescaling the X coordinates, renaming the ρ

coordinates Y , and renaming the curvature term m2
B)

ds2

2πα′ =

(

1 +
m2
B

2T
Y 2
B

)D−1
∑

ξ=0

dXξdXξ +

D+NB−1
∑

B=D

dYBdYB +
1

2πα′

9
∑

a=D+NB

deadea. (4.2)

Here NB = p′ + 1 is the number of massive scalars on the worldsheet. The ten space-time

coordinates, Zµ (µ = 0, . . . , 9), include a RD part, which is spanned by the X coordinates

and is multiplied by the warp factor, and also the Y and ea coordinates. Our X and Y
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coordinates are dimensionless. In our computation we will integrate out at one-loop order

the Y coordinates and the massive fermions. This means that in our action we only need

to keep terms up to quadratic order in these fields.

We choose the static gauge fixingXα =
√
Tσα (α = 0, 1), where T is the string tension.

In this gauge m2
B become the masses of the radial coordinates YB , where B is an index

running over all these fields. Note that in this gauge, the range of the dimensionless X on

(say) the torus is 0 ≤ X0 ≤ L
√
T , 0 ≤ X1 ≤ R

√
T .

The second possible bosonic background is the NS-NS 2-form field. We assume this

field is not polarized in the RD directions, and therefore has no interaction with the X

coordinates to one loop order. For D > 3, this assumption follows from Lorentz invariance.

The background generally includes also various R-R field strengths which couple to

the worldsheet fermions through the covariant derivative including terms proportional to

Θ̄Fµ1···µpΓ
µ1···µpΘ. For each p-form we define Γ̃p ≡ 1

8p!e
φFµ1···µpΓ

µ1···µp (this has units of

mass in our conventions). We work under the assumption that Γ̃p can be expressed with

gamma matrices polarized orthogonally to the RD directions. There may be non-zero

background fields in these directions, such as the self-dual 5-form in the original AdS/CFT

correspondence [15], which is polarized in all ten dimensions. However, because of Lorentz

invariance in the RD directions, Γ̃p is a sum over gamma matrices which either contain

all D directions (and possibly other directions), or none. Therefore, the gamma matrices

which are polarized in the flat directions can be expressed as gamma matrices polarized in

orthogonal directions using the chirality operator; e.g. Γ̃5 = F01234Γ
01234 + F56789Γ

56789 =

(F01234Γ
11 + F56789)Γ

56789.

To conclude, our analysis will include all the possible p-form backgrounds which appear

in IIA/B superstring theories, apart from the B-field which, if polarized orthogonally to

the field theory dimensions, does not couple directly to the X scalars, and it can only give

interaction terms which do not contribute in our one-loop computation.

There may be more then one background p-form field present, and their sum generates

a mass and interaction terms for the fermions. For simplicity we will start with the case

of a single p-form background. As we will discover, the fermionic action is identical for

all p-forms which we consider (up to some sign differences). At this point, the addition of

several forms will be trivial. In our convention Γ̃p is a real matrix that has the following

symmetry and commutation properties with Γi (i = 0, . . . ,D − 1)

Γ̃Tp = Γ̃p Γ̃Tp = −Γ̃p

IIA ([Γ̃p,Γ
i] = 0) p = 4 p = 2 (4.3)

IIB ({Γ̃p,Γi} = 0) p = 1, 5 p = 3

Each Γ̃p matrix is symmetric (skew-symmetric), and therefore by itself diagonalizable (block

diagonalizable). As we will see there are other matrices which multiply Γ̃p, so the final

mass matrix is always skew-symmetric, and we can bring it to a block diagonalized form,

which is the standard form for Dirac mass terms. For the total mass matrix to be brought

into this form, we need all the matrices which originate in different fluxes to commute with

each other. This occurs in all the examples which we discuss, and should be the case in
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any well-defined worldsheet theory. We stress that although the fermion and scalar masses

come from different background fields, they are always related through the background

equations of motion to give the sum rule (2.16). This is necessary for our results to be

finite, as we will see in section 6. We will discuss separately the type IIA and type IIB

cases, and show that they lead to the same action in the backgrounds we consider.

4.2 Type IIA action

We begin with the type IIA action in its Polyakov form, in the Green-Schwarz (GS) for-

malism, to second order in fermions [34, 35, 37]:

SP = − 1

4πα′

∫

d2σ{
√
−hhαβ(∂αZµ∂βZµ − 2i∂αZ

µΘ̄ΓµDβΘ)

+ 2iǫαβ∂αZ
µΘ̄Γ11ΓµDβΘ},

Dα ≡ ∂α +
∑

p

∂αZ
µΓ̃pΓµQp, {Q2 = Γ11,Q4 = I}. (4.4)

Here the fields Zµ are contracted with the metric gµν written above (4.2). Θ is a space-time

Majorana fermion with 32 real degrees of freedom off-shell (the Majorana condition is taken

such that the fermions are real variables). The gamma matrices obey the general relation

{Γµ,Γν} = 2gµν . The worldsheet directions are α, β = 0, 1. Apart from diffeomorphism

and Weyl invariance, the action is kappa symmetric and reduces to the familiar GS action

in flat space-time. The matrices Qp are needed when we write the action in this compact

form, without an explicit summation over two Weyl fermions as in [38]. These matrices

ensure that the matrix sitting between the two fermions is antisymmetric.

Since we are interested in describing the low-energy effective action on a long string,

the convenient gauge to work in is the static gauge Xα = σα
√
T (α = 0, 1).5 This is useful

as we have a dimensionless parameter to expand in, which is ki/
√
T , where ki are the

momenta of the fields on the string. After this gauge fixing, we cannot completely gauge

away the worldsheet metric hαβ. We therefore set the metric to its classical value, using

the equations of motion, and expand around this solution:

Kαβ ≡ ∂αZ
µ∂βZµ − i(∂αZ

µΘ̄ΓµDβΘ + α↔ β),

hαβ
√
−K =

√
−hKαβ ,

h ≡ det(hαβ),K ≡ det(Kαβ). (4.5)

Integrating out the metric classically we obtain the following Nambu-Goto like action

SNG = − 1

2πα′

∫

d2σ{
√
−K + S2},

S2 = iǫαβ∂αZ
µΘ̄Γ11ΓµDβΘ. (4.6)

5Note that in this gauge we still need to take into account the equation of motion of Xα which is not

automatically satisfied, and should be viewed as a constraint. At leading order the constraint follows from

the other equations of motion, so the leading non-trivial constraint on physical states arises at 5-derivative

order and involves four fields. It would be interesting to find a different formalism in which the constraints

are automatically satisfied.
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As mentioned earlier, we will not consider effects from loops of the massless fields in the

theory, and so we will ignore the worldsheet metric fluctuations. In principle we still need

to fix the Weyl gauge symmetry, however this symmetry acts only on the metric hαβ so

this will not affect our computation. Note that the metric does not have a kinetic term,

and therefore will not contribute to the Lüscher term.

We split our Majorana fermion into two space-time Weyl-Majorana fermions:

Θ = Θ1 + Θ2, Γ11ΘI = (−1)I+1ΘI , (I = 1, 2). (4.7)

We write the gamma matrices as a product of gamma matrices in the 2 dimensional world-

sheet directions and the transverse 8 directions. In the following, ρα(γi) are 2(8) dimen-

sional gamma matrices in flat space (see appendix B for more details), and then we have

Γα =
√

2πα′ρα ⊗ I, Γi =
√

2πα′ρ⊗ γi,

Γ̃p ≡
1√
2πα′

ρp ⊗ γ̃p,

ρ ≡ ρ0ρ1, γc ≡ γ2 · · · γ9, Γ11 ≡ ρ⊗ γc. (4.8)

Here ρ is the worldsheet chirality operator, γc is the chirality operator in the transverse 8

dimensions, and Γ11 is the 10 dimensional chirality operator. In (4.8) we wrote explicitly

the vielbein e
a(i)
b(j) ∝ δa(i),b(j)

√
2πα′ (to leading order in the radial variables Y ). We fix the

kappa symmetry by identifying the worldsheet chirality of the fermions with their space-

time chirality. This means that both fermions have positive 8 dimensional chirality in the

transverse directions. In our basis of gamma matrices the kappa fixing then takes the form

ρΘI = Γ11ΘI , γcΘI = ΘI . (4.9)

This eliminates half of the degrees of freedom carried by the fermions, and our space-time

spinors now have a worldsheet spinor index and an 8-dimensional space-time spinor index.

This kappa fixing is not entirely arbitrary, as we shall now explain.

Our action (4.6) is invariant under local fermionic transformations which are general-

izations of the flat-space kappa symmetry transformation presented in [38],

δkΘ = 2iΓ · ΠαP
αβkβ , δkX

µ = iΘ̄ΓµδkΘ

Pαβ ≡ 1

2

(

Kαβ − ǫαβΓ11

√
−K

)

, Πµ
α ≡ ∂αX

µ − iΘ̄Γµ∂αΘ. (4.10)

Here kα is a Majorana fermion in space-time and Pαβ is a projector operator, affecting

only half of the d.o.f in Θ. When we split our Majorana fermions in (4.7), each fermion

Θ1,2 is only affected by the part of k which has the opposite space-time chirality. We then

define k = k1 +k2, where Γ11ki = (−1)iki. In the static gauge the projection operator Pαβ

becomes a worldsheet chirality projector,

δkΘ
1 = −4iΓ−k

1 +O(Zµ), δkΘ
2 = −4iΓ+k

2 +O(Zµ), (4.11)
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where Γ± = 1
2(Γ0±Γ1) refer to the lightcone coordinates. Here O(Zµ) refers to corrections

which involve other fields. A simple gauge fixing which completely fixes our gauge freedom

is then [35]

Γ−Θ1 = 0, Γ+Θ2 = 0. (4.12)

One should make sure that the Fadeev-Popov determinant of our full gauge fixing, namely

the kappa symmetry and diffeomorphism gauge fixing, does not vanish. This determinant

will contain a kinetic term for ki, which will become ghost fields, and the O(Zµ) term in

the kappa transformation will produce interaction terms between the ghosts and the other

coordinates. We have verified the consistency of our gauge-fixing, but we will not describe

this in detail here.

After taking the static gauge the Xα no longer appear in the action, which involves

(up to terms which do not contribute in our one-loop computation)

Kαβ = −δα,oδβ,02πα′T + δα,1δβ,12πα
′T + ∂αX

i∂βXi + ∂αY
B∂βYB

+i
√

2πα′T (Θ1ρ1(ρα∂β + ρβ∂α)Θ1 − Θ2ρ1(ρα∂β + ρβ∂α)Θ
2)

±i
√

2πα′T [Θ1ρ1{ρα, ρβ}γ̃pΘ2 − Θ2ρ1{ρα, ρβ}γ̃Tp Θ1]

±2i
√

2πα′∂αX
i∂βXi[Θ

1ρ1γ̃pΘ
2 − Θ2ρ1γ̃

T
p Θ1],

S2 = 2i
√

2πα′T (Θ1∂+Θ1 + Θ2∂−Θ2) ± 2i
√

2πα′T (Θ1γ̃pΘ
2 − Θ2γ̃Tp Θ1)

± i

2

√
2πα′ǫαβ∂αX

i∂βX
j(Θ1[γi, γj ]γ̃pΘ

2 + Θ2[γi, γj ]γ̃
T
p Θ1). (4.13)

The upper(lower) sign relates to the 4(2)-form background, and the relative minus sign

between the two backgrounds can be swallowed into γ̃p. Since our final results will only

depend on physical quantities, such as the masses squared of the fermions (which are

proportional to γ̃2
p), this will not make a difference. Thus, we can see that the two different

possible type IIA backgrounds give the same form to the action. When deriving (4.13),

we used the worldsheet chirality of the fermions to express ρ0 as ρ1 which is a positive

matrix. One should notice that there are no interactions linear in Xi. This is because of

our gauge choice for kappa symmetry fixing and the assumptions on Γ̃p which includes no

gamma matrices in the worldsheet directions. Notice that fermions of opposite chirality

only mix through mass terms proportional to γ̃p, and so this mixing vanishes in flat space

as it should.

4.3 Type IIB action

Here we start directly with the NG like action for the type IIB case [34, 35], given

by (4.6) with

Kαβ ≡ ∂αZ
µ∂βZµ − i(∂αZ

µΘ̄IΓµD
IJ
β ΘJ + α↔ β), (I, J = 1, 2),

S2 = iǫαβ∂αZ
µΘ̄IρIJΓ11ΓµD

JK
β ΘK ,

DIJ
α ≡ ∂αδ

IJ + ∂αZ
µΓ̃pΓµQ

IJ
p , {QIJp=1,5 = ρIJ0 , QIJp=3 = −ρIJ1 }. (4.14)

In the type IIB case we have two fermions Θ1,2, both with positive space-time chirality. One

technical difference between the type IIA and type IIB actions, is that the first is initially
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written for a single Majorana fermion, while the latter is written in terms of two fermions.

This difference is because in the type IIA case we can use the space-time chirality operator

to distinguish the right and left movers and so to write down the correct interactions. After

gauge-fixing and using the metric (4.2), the determinant K and the topological part S2

are the same in the type IIB case as in (4.13), where the upper sign refers to the 1,5-form

cases and the lower sign to the 3-form case. The kappa symmetry fixing is restricted to be

the same as in the type IIA case, so that here the worldsheet chirality of the fermions is

not the same as their space-time chirality, but as their 8-dimensional chirality:

Γ11ΘI = ΘI , ρΘI = (−1)I+1ΘI , γcΘI = (−1)I+1ΘI . (4.15)

Again, we see that the action is the same for all flux sectors.

When we have several background fields, we will still have the same action, but we

should replace γ̃p by the sum
∑

p γ̃p. As we claimed before, this sum of matrices can

always be block diagonalized. Both for type IIA and for type IIB we can re-express it in

the following way, in terms of projection operators γ̃F on mass eigenstates:

∑

p

γ̃p =
∑

F

mF

2
√
T
γ̃F , tr[γ̃TF γ̃F ] =

1

8
tr[1] = 2, (γ̃TF γ̃F )2 = γ̃TF γ̃F . (4.16)

These matrices obey the commutation relation [γ̃F , γ
c] = 0 for the type IIA theory, and

the anti-commutation relation {γ̃F , γc} = 0 for type IIB. The sum
∑

F is over all massive

fermions. γ̃TF γ̃F is a projection operator in the 16-dimensional spinor space, projecting onto

one on-shell fermionic d.o.f. In this description we have eight worldsheet Dirac fermions

with (generally) different masses. An example of such a decomposition is given in section 5.3

where the Maldacena-Nuñez R-R background is discussed.

4.4 The Nambu-Goto determinant

We now carry on with a derivative expansion of the action (4.6). In the rest of the section

we will use the Einstein summation rule for the worldsheet coordinates. We incorporate

the space-time metric explicitly, and use A · A =
∑

aAaAa, with the relevant indices

for X and Y coordinates. Our NG-like action contains a square root of the determinant

K = K00K11 −K01K10. This can be consistently expanded in powers of derivatives over

the tension, k√
T
≪ 1. We will perform this expansion up to sixth order in derivatives and

up to second order in the massive fields Y and Θ.6 This will be enough to compute the

one-loop effective action of the X’s by integrating out the massive fields. We rescale the

fermionic fields Θ → (2πα′

64T )
1
4 Θ. The spinors Θ1,Θ2 are Weyl spinors, and have only one

d.o.f on the worldsheet (Θ1 =

(

θ1

0

)

, Θ2 =

(

0

θ2

)

). From here on we write our action in

terms of θ1 and θ2, which are worldsheet scalars. The elements of K are given by

K00

2πα′ = (−T + ∂0X · ∂0X)

(

1 +
m2
B

2T
Y 2
B

)

+ ∂0Y · ∂0Y

6Actually we will not require in this paper the six-derivative terms with fermion couplings, so we will

not write them down.
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− i

4
(θ1∂0θ

1 + θ2∂0θ
2) +

imF

8
(θ1γ̃F θ

2 − θ2γ̃TF θ
1)

(

1

T
∂0X · ∂0X − 1

)

,

K11

2πα′ = (T + ∂1X · ∂1X)

(

1 +
m2
B

2T
Y 2
B

)

+ ∂1Y · ∂1Y

+
i

4
(θ1∂1θ

1 − θ2∂1θ
2) +

imF

8
(θ1γ̃F θ

2 − θ2γ̃TF θ
1)

(

1

T
∂1X · ∂1X + 1

)

,

K01

2πα′ = ∂0X · ∂1X

(

1 +
m2
B

2T
Y 2
B

)

+ ∂0Y · ∂1Y +
i

4
(θ1∂−θ

1 + θ2∂+θ
2)

+
imF

8T
∂0X · ∂1X(θ1γ̃F θ

2 − θ2γ̃TF θ
1), (4.17)

and its determinant (to the order we need) by

−K
(2πα′T )2

= 1 +
1

T
∂αX · ∂αX +

1

T
∂αY · ∂αY +

m2
B

T
Y 2
B +

i

2T
(θ1∂+θ

1 + θ2∂−θ
2)

+
imF

4T
(θ1γ̃F θ

2 − θ2γ̃TF θ
1) (4.18)

+
1

T 2
∂αX ·∂αX

{

∂βY ·∂βY +m2
BY

2
B+

i

2
(θ1∂+θ

1+θ2∂−θ
2)+

imF

4
(θ1γ̃F θ

2−θ2γ̃TF θ
1)

}

− 1

T 2
∂αX · ∂βX∂αY · ∂βY − i

2T 2
∂αX · ∂+Xθ

1∂αθ1 − i

2T 2
∂αX · ∂−Xθ2∂αθ2

+
1

T 3
((∂αX ·∂αX)2−∂αX ·∂βX∂αX ·∂βX)

{

T

2
+
m2
B

2
Y 2
B+

imF

8
(θ1γ̃F θ

2−θ2γ̃TF θ
1)

}

.

Already at this stage we can see that in the static gauge, we have a canonical kinetic term for

the fermions, and part of the interactions became mass terms for the fermions and scalars.

Our first step will be to expand the square root in the action (4.6) in powers of

− K
(2πα′T )2

− 1, to the order we are interested in:

S = −T
∫

d2σ

{

1 +
1

2

( −K
(2πα′T )2

− 1

)

− 1

8

( −K
(2πα′T )2

− 1

)2

+
1

16

( −K
(2πα′T )2

− 1

)3

− 5

128

( −K
(2πα′T )2

− 1

)4

+
1

2πα′T
S2

}

. (4.19)

Keeping only terms we are interested in, the powers in S are given by:

( −K
(2πα′T )2

− 1

)2

=
2

T 2
∂αX · ∂αX

{

∂βY · ∂βY +m2
BY

2
B

− i

2
(θ1∂+θ

1+θ2∂−θ
2)+

imF

4
(θ1γ̃F θ

2−θ2γ̃TF θ
1)

}

− 2

T 3
∂γX ·∂γX∂αX ·∂βX∂αY ·∂βY

− 1

T 3
∂γX · ∂γX{∂αX · ∂+Xθ

1∂αθ1 + ∂αX · ∂−Xθ2∂αθ2} +
1

T 2
(∂αX · ∂αX)2

+
1

T 3
(3(∂αX · ∂αX)2 − ∂αX · ∂βX∂αX · ∂βX)

{

∂γY · ∂γY +m2
BY

2
B

+
i

2
(θ1∂+θ

1 + θ2∂−θ
2) +

imF

4
(θ1γ̃F θ

2 − θ2γ̃TF θ
1)

}
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+
1

T 4
((∂αX · ∂αX)3−∂γX · ∂γX∂αX · ∂βX∂αX · ∂βX)(T+∂δY · ∂δY +2m2

BY
2
B)

− 1

T 4
((∂αX · ∂αX)2 − ∂αX · ∂βX∂αX · ∂αX)∂γX · ∂δX∂γY · ∂δY, (4.20)

( −K
(2πα′T )2

− 1

)3

=
3

T 3
(∂αX · ∂αX)2

{

∂βY · ∂βY +m2
BY

2
B

+
i

2
(θ1∂+θ

1 + θ2∂−θ
2) +

imF

4
(θ1γ̃F θ

2 − θ2γ̃TF θ
1)

}

+
1

T 4
(∂αX · ∂αX)3(T+6∂βY · ∂βY +6m2

BY
2
B)− 3

T 4
(∂αX · ∂αX)2∂βX · ∂γX∂βY · ∂γY

− 3

T 4
(∂γX · ∂γX∂αX · ∂βX∂αX · ∂βX)(∂δY · ∂δY +m2

BY
2
B), (4.21)

and
( −K

(2πα′T )2
− 1

)4

=
4

T 4
(∂αX · ∂αX)3{∂βY · ∂βY +m2

BY
2
B}. (4.22)

The full action to order O((∂X)6Y 2, (∂X)4θ2) is then

S = −
∫

d2σ

{

T +
1

2
∂αX · ∂αX +

1

2
∂αY · ∂αY +

1

2
m2
BY

2
B

+
i

2
(θ1∂+θ

1 + θ2∂−θ
2) +

imF

4
(θ1γ̃F θ

2 − θ2γ̃TF θ
1)

+
1

4T
∂αX ·∂αX

[

∂βY ·∂βY +m2
BY

2
B+

i

2
(θ1∂+θ

1+θ2∂−θ
2)+

imF

4
(θ1γ̃F θ

2−θ2γ̃TF θ
1)

]

− 1

2T
∂αX · ∂βX∂αY · ∂βY − i

4T
∂αX · ∂+Xθ

1∂αθ1 − i

4T
∂αX · ∂−Xθ2∂αθ2

+
1

4T 2
∂γX · ∂γX∂αX · ∂βX∂αY · ∂βY

+
i

8T 2
∂γX · ∂γX[∂αX · ∂+Xθ

1∂αθ1 + ∂αX · ∂−Xθ2∂αθ2]

+
1

T 2
(∂αX · ∂αX)2

[

T

8
− 3

16
∂βY · ∂βY +

1

16
m2
BY

2
B − 3i

32
(θ1∂+θ

1 + θ2∂−θ
2)

+
imF

64
(θ1γ̃F θ

2 − θ2γ̃TF θ
1)

]

+
1

T 2
(∂αX · ∂βX∂αX · ∂βX)

[

− T

4
+

1

8
∂γY · ∂γY − 1

8
m2
BY

2
B +

i

16
(θ1∂+θ

1 + θ2∂−θ
2)

− imF

32
(θ1γ̃F θ

2 − θ2γ̃TF θ
1)

]

+
imF

32T
ǫαβ∂αX

i∂βX
j(θ1[γi, γj ]γ̃F θ

2 + θ2[γi, γj ]γ̃
T
F θ

1)

+
1

32T 3
(∂αX · ∂αX)3(−2T + 3∂βY · ∂βY −m2

BY
2
B)

− 1

16T 3
(∂αX · ∂αX)2∂βX · ∂γX∂βY · ∂γY

+
1

16T 3
∂αX · ∂αX∂βX · ∂γX∂βX · ∂γX(2T − ∂δY ∂

δY +m2
BY

2
B)

− 1

8T 3
∂αX · ∂βX∂αX · ∂βX∂γX · ∂δX∂γY · ∂δY

}

. (4.23)
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Note that in terms such as mF θ
1γ̃F θ

2 there is an implicit sum over the massive fermions

F = 1, . . . , NF .

4.5 Feynman rules

The action (4.23) above yields the following Feynman rules in Minkowski space, where each

vertex is accompanied by a momentum delta function and each momentum integral (which

we perform in Euclidean space) should be multiplied by i due to Wick rotation.

4.5.1 Propagators

For each fermion with mass mF the propagator is

Gab(k) = < θa(k)θb(−k) >

=
4

p2 +m2
F

[(

−ip− mF
2 γ̃F

−mF
2 γ̃TF −ip+

)

1

2

(

1 + γc

1 ± γc

)]

ab

× γ̃TF γ̃F , (4.24)

where the indices a, b = 1, 2 indicate the entry for the 2 × 2 matrix. Notice the two

projection operators in the fermion propagator. The first is to project the fermion onto

the proper 8 dimensional chirality, according to the kappa symmetry fixing (upper sign for

type IIA backgrounds and lower sign for type IIB). The second projector projects onto one

d.o.f only, with a specific mass mF .

For a scalar with mass mB the propagator is

< Ya(k)Yb(−k) > =
−i

k2 +m2
B

δab. (4.25)

4.5.2 Interactions

In our conventions, we put into the vertices we write below the sum over permutations of

X fields but not of other fields. We will consistently take this into account in the symmetry

factors of the loop diagrams. The vertices including only scalar fields are:

< Xi(k1)Xj(k2)Xk(k3)Xl(k4) >= δijδkl

{

− i

T
k1 ·k2k3 ·k4+

i

T
k1 ·k3k2 ·k4+

i

T
k1 ·k4k2 ·k3

}

+δilδjk(k1 ↔ k3) + δikδjl(k1 ↔ k4), (4.26)

< Xi(k1)Xj(k2)Xk(k3)Xl(k4)Xm(k5)Xn(k6) >= δijδklδmn

{

− 3i

T 2
k1 · k2k3 · k4k5 · k6

+
i

T 2
[k1 · k2(k3 · k5k4 · k6 + k4 · k5k3 · k6) + (1; 2) ↔ (3; 4) + (1; 2) ↔ (5; 6)]

}

+δijδkmδln(k3↔k6)+δijδknδlm(k3↔k5)+δklδimδjn(k1↔k6)+δklδinδjm(k1↔k5)

+ more permutations on [(i; 1), (j; 2), (k; 3), (l; 4), (m; 5), (n; 6)], (4.27)

< Xi(k1)Xj(k2)Ya(k3)Yb(k4) >= δijδab
i

2T
{(−k1 ·k2k3 ·k4+k1 ·k3k2 ·k4+k1 ·k4k2 ·k3)

+m2
Bk1 · k2}, (4.28)

<Xi(k1)Xj(k2)Xk(k3)Xl(k4)Ya(k5)Yb(k6)>=δabδijδkl
i

2T 2
{k1 ·k2(k3 ·k5k4 ·k6+k3 ·k6k4 ·k5)

+k3 · k4(k1 · k5k2 · k6 + k1 · k6k2 · k5) − 3k1 · k2k3 · k4k5 · k6 + k1 · k3k2 · k4k5 · k6
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+k1 · k4k2 · k3k5 · k6 +m2
B(−k1 · k2k3 · k4 + k1 · k3k2 · k4 + k1 · k4k2 · k3)}

+δabδilδjk(k1 ↔ k3) + δabδikδjl(k1 ↔ k4), (4.29)

< Xi(k1)Xj(k2)Xk(k3)Xl(k4)Xm(k5)Xn(k6)Ya(k7)Yb(k8) >= δijδklδmnδab

× i

2T 3
{k1 · k2k3 · k4k5 · k6(−9k7 · k8 − 3m2

B)

+[k3 · k4k5 · k6(k1 · k7k2 · k8 + k2 · k7k1 · k8) + (1; 2) ↔ (3; 4) + (1; 2) ↔ (5; 6)]

+(k7 ·k8+m2
B)[k1 ·k2(k3 ·k5k4 ·k6+k3 ·k6k4 ·k5)+(1; 2)↔(3; 4)+(1; 2)↔(5; 6)]

+[(k5 ·k3k6 ·k4+k5 ·k4k6 ·k3)(k1 ·k7k2 ·k8+k1 ·k8k2 ·k7)+(1; 2)↔(3; 4)+(1; 2)↔(5; 6)]}
+ permutations on [(i; 1), (j; 2), (k; 3), (l; 4), (m; 5), (n; 6)]. (4.30)

The vertices involving fermions are, using ki × kj ≡ ǫαβkiαkjβ,

< Xi(k1)Xj(k2)θ
1(k3)θ

1(k4) >= δij
i

8T
(−k1 · k2(k4+ − k3+) + k2 · (k4 − k3)k1+

+k1 · (k4 − k3)k2+), (4.31)

< Xi(k1)Xj(k2)θ
2(k3)θ

2(k4) >= δij
i

8T
(−k1 · k2(k4− − k3−) + k2 · (k4 − k3)k1−

+k1 · (k4 − k3)k2−), (4.32)

< Xi(k1)Xj(k2)θ
1(k3)θ

2(k4) >= −mF γ̃F
8T

k1 · k2 −
mF [γi, γj ]γ̃F

16T
k1 × k2, (4.33)

< Xi(k1)Xj(k2)θ
2(k3)θ

1(k4) >=
mF γ̃

T
F

8T
k1 · k2 −

mF [γi, γj ]γ̃
T
F

16T
k1 × k2, (4.34)

< Xi(k1)Xj(k2)Xk(k3)Xl(k4)θ
1(k5)θ

1(k6) >= δijδkl
i

8T 2
{k1 · k2k3 · (k6 − k5)k4+

+k1 · k2k4 · (k6 − k5)k3+ + k3 · k4k1 · (k6 − k5)k2+ + k3 · k4k2 · (k6 − k5)k1+

−3k1 ·k2k3 ·k4(k6+−k5+)+k1 ·k3k2 ·k4(k6+−k5+),+k1 ·k4k2 ·k3(k6+−k5+)}
+δilδjk(k1 ↔ k3) + δikδjl(k1 ↔ k4), (4.35)

< Xi(k1)Xj(k2)Xk(k3)Xl(k4)θ
2(k5)θ

2(k6) >= δijδkl
i

8T 2
{k1 · k2k3 · (k6 − k5)k4−

+k1 · k2k4 · (k6 − k5)k3− + k3 · k4k1 · (k6 − k5)k2− + k3 · k4k2 · (k6 − k5)k1−

−3k1 ·k2k3 ·k4(k6−−k5−)+k1 ·k3k2 ·k4(k6−−k5−)+k1 ·k4k2 ·k3(k6−−k5−)}
+δilδjk(k1 ↔ k3) + δikδjl(k1 ↔ k4), (4.36)

< Xi(k1)Xj(k2)Xk(k3)Xl(k4)θ
1(k5)θ

2(k6) >= δijδkl
mF γ̃F
8T 2

(k1 · k2k3 · k4

−k1 · k3k2 · k4 − k1 · k4k2 · k3) + δilδjk(k1 ↔ k3) + δikδjl(k1 ↔ k4), (4.37)

< Xi(k1)Xj(k2)Xk(k3)Xl(k4)θ
2(k5)θ

1(k6) >= −δijδkl
mF γ̃

T
F

8T 2
(k1 · k2k3 · k4

−k1 · k3k2 · k4 − k1 · k4k2 · k3) + δilδjk(k1 ↔ k3) + δikδjl(k1 ↔ k4). (4.38)

5 Examples

In this section we review some known confining backgrounds which have a dual gauge

theory interpretation. All of these examples are special cases of the general background

which we analyze in this paper. We provide a very short description for each background,
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followed by a derivation of the physical parameters of the background (scalar and fermion

masses). In all of these examples, one can see that the sum rule (2.16) holds.

5.1 Witten background for D = 3

A confining theory related to pure SU(N) Yang-Mills (YM) theory in 3 dimensions was

proposed in [18]. The approach taken there was to start with the AdS5/CFT4 duality and to

compactify the conformal theory on a circle with radius R0, taking anti-periodic boundary

conditions for the fermions. This breaks supersymmetry explicitly, and the fermions all

have a mass proportional to 1/R0. The 3 dimensional coupling is g3 = g2
4N/R0. The pure

YM theory is obtained in the limit g2
4N → 0, R0 → 0, g3 fixed. However, with present

knowledge, we can only analyze the gravity side at small curvature, which implies g2
4N ≫ 1.

Therefore the theory we analyze is dual to a strongly coupled 3 dimensional theory (which

becomes four dimensional at the scale 1/R0; this turns out to also be the scale of the mass

gap at strong coupling).

On the gravity side, the theory is a type IIB superstring theory. The background is

given [18] by a metric and a five-form,

ds2

R2
=

(

u2 − u4
0

u2

)

dτ2 +

(

u2 − u4
0

u2

)−1

du2 + u2
2
∑

i=0

dX2
i + dΩ2

5,

F5 = 16πNα′2ω5, R2 =
√

4πgsNα
′,

∫

S5

ω5 = π3, eφ = gs, (5.1)

where u0 is related to the periodicity of the circle coordinate τ , and ω5 is the volume form on

a 5-sphere with unit radius. The τ circle shrinks smoothly at u = u0, ending the space. In

this background, as we will show in the next subsections, there are six massless scalars, two

massive scalars with mass
m2

B
T =

√

16π
gsN

and eight massive fermions with mass
m2

F
T =

√

π
gsN

.

5.1.1 Scalar masses

We take the limit u→ u0:

u = u0

(

1 +
2πα′

R2
ρ2 +O(ρ4)

)

,

ds2

2πα′ =

(

1 +
4πα′

R2
ρ2

) 2
∑

i=0

dX2
i + ρ2dτ2 + dρ2 +

R2

2πα′ dΩ
2
5, (5.2)

where we rescaled X and τ . Comparing the last equation in (5.2) with (4.2) we find two

massive scalars of mass
m2

B
T = 8πα′

R2 =
√

16π
gsN

, which are the two radial directions (ρ and τ),

and six massless transverse scalars coming from the X and S5 directions.

5.1.2 Fermion masses

The 5-form in this background couples to the fermions, as described in [34, 35], so that the

covariant derivative on the worldsheet is:

DIJ
α = ∂αδ

IJ+
eφ

16·5!FabcdeΓ
abcde∂αZ

µΓµQ
IJ
5 =∂αδ

IJ+
√

2πα′gs
2πNα′2

R5
ργ56789∂αZ ·ΓQIJ5
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= ∂αδ
IJ +

1

2

(

π

gsN

) 1
4

ργ56789∂αZ · ΓQIJ5

≡ ∂αδ
IJ + Γ̃5∂αZ · ΓQIJ5 = ∂αδ

IJ +

8
∑

F=1

mF

2
√
T
ργ̃F∂αZ · ΓQIJ5 , (5.3)

where in ∂αZ · Γ we contract with δab. Notice the factor 2 in the second equality coming

from the fact that we included the dual 5-form. In this notation Γ̃5 = 1
2( π
gsN

)
1
4ργ56789.

There are 8 massive fermions with mass
m2

F
T =

√

π
gsN

. We can take γ̃F to be γ56789 times

any basis of projection operators commuting with γ56789.

5.2 Witten background for D = 4

A theory related to a pure YM theory in 4 dimensions can be achieved by methods similar

to those in the previous example, starting from D4-branes [18]. The string theory is a

type IIA theory, with a background including the metric, a 4-form on the sphere, and a

dilaton which diverges at infinity. Again, there is a circle which vanishes at a finite radial

coordinate. The background is given by [18]

ds2

α′ =
2πλ

3u0
u



4u2
3
∑

i=0

dx2
i +

4

9u2
0

u2

(

1 − u6
0

u6

)

dτ2 + 4
du2

u2
(

1 − u6
0
u6

) + dΩ2
4



 ,

F4 = 3πNα′ 3
2ω4, R2 =

2πλ

3
α′,

∫

S4

ω4 =
8π2

3
, e2φ =

8πλ3u3

27u3
0N

2
, (5.4)

where λ is related to the four dimensional ’t Hooft coupling, and ω4 is the volume form on

the unit 4-sphere. In this background we find there are six massless scalars, two massive

scalars with mass
m2

B
T = 27

4λ and eight massive fermions with mass
m2

F
T = 27

16λ .

5.2.1 Scalar masses

We take the limit u→ u0, and obtain (after rescalings)

u = u0

(

1 +
9

8λ
ρ2 +O(ρ4)

)

,

ds2

2πα′ =

(

1 +
27

8λ
ρ2

) 3
∑

i=0

dx2
i + ρ2dτ2 + dρ2 +

R2

2πα′ dΩ
2
4. (5.5)

Comparing to (4.2) we find six transverse massless scalars and two massive scalars with

mass
m2

B
T = 27

4λ .

5.2.2 Fermion masses

The 4-form in this background couples to the fermions, as described in [34, 35], so that the

covariant derivative on the worldsheet is

Dα = ∂α +
1

8 · 4!e
φFabcdΓ

abcd∂αZ
µΓµ = ∂α +

1

8

√
2πα′

√

8πλ3

27N2

27N

4πλ2
√
α′
γ6789∂αZ · Γ
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= ∂α +
1

2

√

27

16λ
γ6789∂αZ · Γ ≡ ∂α +

8
∑

F=1

mF

2
√
T
γ̃F∂αZ · Γ. (5.6)

Here we used Γ̃4 = 1
2

√

27
16λγ

6789. We find 8 massive fermions, each with mass
m2

F
T = 27

16λ .

5.3 The Maldacena-Nuñez background

It was proposed in [19] that the gravity solution found in [25] is associated with the the-

ory of N D5-branes on a 2-sphere, which in a specific limit becomes the four dimensional

N = 1 supersymmetric YM theory (SYM). The UV theory is 6 dimensional and maximally

supersymmetric. The spin structure on the sphere is taken such that only 4 supersymme-

tries remain, and in the limit of small ’t Hooft coupling the IR theory is the 4 dimensional

N = 1 SYM. In the weakly curved limit (large ’t Hooft coupling) there is no separation

between the SYM theory and the six dimensional modes. The background consists of a

metric, a R-R 3-form, and a dilaton:

ds2

α′ = eφDN

[

3
∑

i=0

dx2
i + dρ2 + e2g(ρ)dΩ2

2 +
1

4

∑

a

(ωa −Aa)2

]

,

e2φD = e2φD,0
sinh(2ρ)

2eg(ρ)
= g2

s

(

1 +
8

9
ρ2 +O(ρ4)

)

,

F3 = N

[

− 1

4
(ω1 −A1) ∧ (ω2 −A2) ∧ (ω3 −A3) +

1

4

∑

a

F ∧ (ωa −Aa)

]

, (5.7)

where (see [19] for details)

a(ρ) =
2ρ

sinh(2ρ)
= 1 − 2

3
ρ2 +O(ρ4),

e2g = ρ coth(2ρ) − ρ2

sinh2(2ρ)
− 1

4
= ρ2 +O(ρ4),

A =
1

2
[σ1a(ρ)dθ + σ2a(ρ) sin(θ)dφ+ σ3 cos(θ)dφ], F = dA+A ∧A,

ω1 + iω2 = e−iψ(dθ̃ + i sin(θ̃)dΦ), ω3 = dψ + cos(θ̃)dφ. (5.8)

There is also a limit of this background where the string coupling becomes strong so one

needs to use an S-duality transformation, after which only NS-NS fields are turned on.

In this limit the confining string is a D-string, and it belongs in the class of backgrounds

discussed in section 2.4; we will not discuss it further here.

In this background there are 3 massive scalars with mass
m2

B
T = 16π

9gsN
and 5 massless

transverse scalars. There are 6 massive fermions with mass
m2

F
T = 8π

9gsN
and 2 massless

fermions, which are Goldstinos for the supersymmetries broken by the string.

5.3.1 Scalar masses

Carefully taking the IR limit ρ → 0, and using 3 Cartesian coordinates YB instead of ρ

and Ω2, the metric is:

ds2

2πα′ =

(

1 +
8πY 2

9gsN

) 3
∑

i=0

dX2
i +

6
∑

B=4

dY 2
B +

1

8π

9
∑

a=7

(ωa−6 −Aa−6)2. (5.9)
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Comparing to (4.2) we find 5 massless scalars and 3 massive scalars with mass
m2

B
T = 16π

9gsN
.

5.3.2 Fermion masses

The covariant derivative contains the following term:

√
2πα′

8 · 3! e
φFµνρe

µ
ae
ν
b e
ρ
cΓ

abcΓ · ∂αZ = −1

2

√

π

18gsN
ρ(γ457 + γ468 + γ569 + 3γ789)Γ · ∂αZ

= −1

2

√

8π

9gsN
ργ789(1 − PI+PII+)Γ · ∂αZ,

PI± ≡ 1

2
(1 ± γ5678), PII± ≡ 1

2
(1 ± γ4589), PIII± ≡ 1

2
(1 ± γ4679). (5.10)

The indices on the gamma matrices γijk are flat space indices, and their numbers corre-

spond to the directions in the metric (5.9). We defined projection operators PI±, PII± and

PIII±, each with half zero eigenvalues, so that each product of three of them projects onto

one physical d.o.f. The three projectors commute, so we can block diagonalize them simul-

taneously and in this basis our 8 fermions split into 8 sectors, according to the projectors

eigenvalues {PI+ = (0, 1), PII+ = (0, 1), PIII+ = (0, 1)}. There are two sectors, {1, 1, 0}
and {1, 1, 1}, for which the mass matrix vanishes. Thus there are 2 massless fermions, while

the other 6 fermions all have the same mass,
m2

F
T = 8π

9gsN
.

5.4 Klebanov-Strassler background

The Klebanov-Strassler background is obtained by considering a collection of N regular

and M fractional D3-branes in the geometry of a deformed conifold [20]. The gravity

solution includes a R4 part with a warp factor, and a six dimensional conifold (including

the radial direction). There are R-R forms F3 and F5, and an NS-NS 2-form B. We

refer to [39] for the exact background and write here only the expansion near the minimal

radial coordinate. We find that there are 5 massless scalars, 3 massive scalars with mass
m2

B
T = 4π

3a
3/2
0 gsM

(where a0 ≈ 0.718 is computed in [39]), 2 massless fermions (corresponding

to the N = 1 Goldstinos) and 6 massive fermions with mass
m2

F
T = 2π

3a
3/2
0 gsM

.

5.4.1 Scalar masses

The metric near ρ = 0 is

ds2

2πα′ =

(

1+
61/32πa1

a
3/2
0 gsM

ρ2

)

3
∑

i=0

dX2
i +dρ2+

ρ2

2
((g1)2+(g2)2)+

√
a0gsMα′

61/3
((g3)2+(g4)2)

+

√
a0gsMα′

4 · 61/3
(g5)2. (5.11)

Here ρ is the radial direction, and g1 and g2 are the tangent directions on a 2-sphere

which shrinks to zero at ρ = 0. g3, g4, g5 are other directions on the sphere which are

massless. Comparing to (4.2) we find 5 massless scalars and 3 massive scalars with mass
m2

B
T = 61/34πa1

a
3/2
0 gsM

= 4π

3a
3/2
0 gsM

. We used the value a1 = 62/3

18 computed in [39].
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5.4.2 Fermion masses

Out of the 4 background fields, there are two which do not vanish at the minimal radial coor-

dinate, F3 andH3. As we stated in section 4, ifH3 is not polarized along the worldsheet then

it does not contribute to the fermion mass terms, which is the case here. Therefore, the only

contribution comes from the R-R 3-form, whose value at the minimal radial coordinate is

Fµνρe
µ
ae
ν
b e
ρ
cΓ

abc =
4

√
3a

3/4
0 M1/2α′1/2g

3/2
s

ρ(3γ345 + γ125 + γρ13 + γρ24)

=
4

√
3a

3/4
0 M1/2α′1/2g

3/2
s

ργ345(1 − PI+PII+). (5.12)

The covariant derivative is therefore
√

2πα′

8 · 3! e
φFµνρe

µ
ae
ν
b e
ρ
cΓ

abcΓ · ∂αZ =
1

2

√

2π

3a
3/2
0 gsM

ργ345(1 − PI+PII+)Γ · ∂αZ,

PI± ≡ 1

2
(1 ± γ1234), PII± ≡ 1

2
(1 ± γρ145), PIII± ≡ 1

2
(1 ± γρ235). (5.13)

The indices on the gamma matrices γijk are flat space indices and correspond to the direc-

tions in the metric (5.11), where ρ is the radial direction and the indices 1, . . . , 5 correspond

to the g1, . . . , g5 directions. The projection operators were defined similarly to those in the

Maldacena-Nuñez example. Thus, we find 2 massless fermions, while the other 6 fermions

all have the same mass,
m2

F
T = 2π

3a
3/2
0 gsM

.

6 The effective action from correlation functions

In this section we compute in confining holographic backgrounds of the form discussed

above, the low-energy effective worldsheet theory for the X fields, which are the coordinates

where the gauge theory lives. The effective action will contain corrections to the classical

interactions. We expect the corrections to be a series in powers of m2

T and ∂2

T , since the

loop expansion parameter is 1
T

7 (T multiplies the whole action in some normalization of

the fields). We can write the effective action as a Nambu-Goto action plus corrections:

S = −
∫

d2σ

{

√

det(−T ′δα,0δβ,0 + T ′δα,1δβ,1 + ∂αX̃ · ∂βX̃) −F(X̃)

}

, (6.1)

where we allow some renormalization of the fields, X̃ = X(1 +O(m2/T )) and the tension,

T ′ = T + O(m2/T ). In order to evaluate the effective action we compute correlation

functions in both the original and the effective theory. By comparing the two, we determine

the coefficients of the operators appearing in F(X̃), whose general form was discussed in

section 2. Since we are interested only in corrections depending on m2, we do not compute

the contribution of massless fields to the effective action.

Our original action (4.23) is non-renormalizable, however all the results we find are

finite, up to possible quadratic divergences which we do not calculate as they have contri-

butions from the massless modes. Presumably this is because the theory is really finite in a

7We will see below that this is not precisely correct due to logarithmic divergences.
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different gauge (conformal gauge). We use a sharp cutoff regularization with cutoff Λ. The

logarithmic convergence of our calculation is important. Such divergences would appear as
m2

T log[m2/Λ2], which implies they vanish in flat space, and a priori one may need to add

counter-terms in order to have a finite effective theory, and the renormalization procedure

will ruin our predictability regarding F(X̃). Notice that even if there are quadratic diver-

gences, at one loop order they appear as Λ2

T with no powers of m2, and thus renormalizing

these divergences has no finite effect on our result.

We find that the effective action at the six-derivative order actually shows no deviation

from Nambu-Goto, namely F(X̃) = 0 to this order.

6.1 The tension

The tension T ′ is the constant term in (6.1), which can be determined from the term

linear in L in the ground state energy of a closed string of length L. The leading order

ground state energy of a string of length L is E = TL, where T is the classical tension of

the string. There are corrections to the energy coming from quantum fluctuations of the

worldsheet fields. At one-loop order this is given by a summation of all (on-shell) modes

in the worldsheet theory [22],

E = TL+
π

4L

∞
∑

n=−∞

{

(N0
B −N0

F )|n| +
∑

B

√

n2 +
m2
BL

2

π2
−
∑

F

√

n2 +
m2
FL

2

π2

}

(6.2)

= TL+
L

8π

{

∑

F

m2
F log(m2

F ) −
∑

B

m2
B log(m2

B)

}

+O(L0).

Here we approximated the sum as an integral, which is correct up to 1
L corrections. Inter-

preting terms linear in L as corrections to the string tension, we find T ′ = T + ∆T with

∆T =
1

8π

{

∑

F

m2
F log(m2

F ) −
∑

B

m2
B log(m2

B)

}

. (6.3)

Note that the logs appearing in (6.2) are really log(m
2

Λ2 ), but the cutoff dependence cancels

out exactly when
∑

F m
2
F =

∑

Bm
2
B, and we will assume this from here on.

6.2 2-point function

In this subsection we compute Π(k) ≡ 〈Xi(k)Xj(−k)〉 to see if we need to perform a

wave-function renormalization of X in order to obtain the quadratic term in (6.1).

6.2.1 Fermion diagrams

There are two fermionic diagrams contributing to the propagator Π(k). One should be

careful about the Wick contractions, paying attention to various minus signs. For exam-

ple, a 4-point diagram involving two vertices of the form XXθ1γ̃θ2 is evaluated with the

following fermionic trace:

< XiXjθ1
aγ̃

abθ2
bX

kX lθ1
c γ̃

cdθ2
d > = < XiXjXkX lθ1

a(k − p)γ̃abθ2
b (p)θ

1
c (−p̃)γ̃cdθ2

d(p̃ − k) >

∝ tr[−G21(p−k)γ̃G21(p)γ̃+G11(p−k)γ̃G22(p)γ̃
T ], (6.4)
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Figure 3. The 2-point fermion diagrams: (1) ∆Π1, (2) ∆Π2. The fermionic propagator is marked

by a dashed line. The numbers indicate the propagator indices; e.g. in (2) there are two contributions

coming from G12 and G21. External solid lines mark the incoming scalarsX i andXj, with momenta

k and −k respectively.

where Gab(p) are the entries in the fermion propagator matrix (4.24).

We need to evaluate the diagrams of figure 3, where the indices on the fermion loops

refer to the type of fermion (θ1 or θ2) in the loop. The first diagram has no contribution,

∆Π1 =
∑

F

i

4T
δij

∫

d2p

(2π)2
{(−p+k

2 + 2k+k · p)(−ip−)tr[(1 + γc)γ̃TF γ̃F ]

+(−p−k2 + 2k−k · p)(−ip+)tr[(1 ± γc)γ̃TF γ̃F ]}1

2

4

p2 +m2
F

=
∑

F

1

2T
δij
∫

d2p

(2π)2

(

1

2
p2k2 − (k · p)2

)

1

p2 +m2
F

= 0. (6.5)

The second fermionic diagram is given by

∆Π2 =
∑

F

mF

8T
(−k2)

mF

2
δij
∫

d2p

(2π)2
4

p2 +m2
F

1

2
{−tr[γ̃TF (1 ± γc)γ̃TF γ̃F γ̃F ]

−tr[γ̃F (1 + γc)γ̃TF γ̃
F γ̃TF ]} =

∑

F

m2
F

2T
k2δij

∫

d2p

(2π)2
1

p2 +m2
F

=
∑

F

im2
F

8πT
k2δij log

[

Λ2

m2
F

]

. (6.6)

Here we used tr[γ̃TF γ̃F γ
c] = 0 and (4.16). The i in the last line comes from computing the

integral in Euclidean space. Because of our (−,+) signature choice, p2 = p2
E , and the only

change is a factor of i from setting p0 = ipE . Note that we evaluate all other diagrams in

the same way.

6.2.2 Scalar diagram

There is a single scalar diagram,

∆Π3 =
∑

B

i

2T
δij
∫

d2p

(2π)2
(−m2

Bk
2 − k2p2 + 2(k · p)2) −i

p2 +m2
B

=
∑

B

−m
2
Bk

2

2T
δij
∫

d2p

(2π)2
1

p2 +m2
B

=
∑

B

− im
2
B

8πT
k2δij log

[

Λ2

m2
B

]

. (6.7)
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Figure 4. The 2-point scalar diagram ∆Π3. Both massive and massless scalars are marked by

solid lines.

6.2.3 Conclusion

The sum of all diagrams is,

∆Π =
ik2

8πT

{

∑

B

m2
B log(m2

B) −
∑

F

m2
F log(m2

F )

}

= −ik2 ∆T

T
. (6.8)

We see that the logarithmic divergence cancels between the fermionic and scalar diagrams

and we are left with a finite contribution. We can now obtain the two-point function:

< X(k)X(−k) > = − i

k2
+ ∆Π

(

− i

k2

)2

= − i

k2

(

1 − i∆Π

k2

)

= − i

k2(1 + i∆Π
k2 )

= − i

k2(1 + ∆T
T )

. (6.9)

This result, together with the tension correction found in section 6.1, are obtained

from the following Minkowskian effective action,

S = −
∫

d2σ

{

T + ∆T +
1

2

(

1 +
∆T

T

)

∂αX∂
αX

}

(6.10)

= −
∫

d2σ

{

√

− det[(T + ∆T )(−δα,0δβ,0 + δα,1δβ,1) + ∂αX̃ · ∂βX̃ ] +O(k4/T 2)

}

.

We find that to this order the effective action is the NG action, with an effective tension

T ′ = T + ∆T , and rescaled fields X̃i = (1 + ∆T
2T )Xi (to leading order in ∆T ).

6.3 4-point function

In this subsection we compute the 4-point function 〈Xi(k1)X
j(k2)X

k(k3)X
l(k4)〉. We

perform the calculation first at leading order in the external momenta, to extract the leading

term O( k
4

T 2 ). For further simplicity, we only consider terms proportional to δijδkl, since the

other terms follow by permutations; in most diagrams this means that only vertices where

Xi is paired with Xj and Xk is paired with X l contribute, so we only evaluate these.

6.3.1 Fermion diagrams

We start from diagrams with a fermion loop. We compute in turn the contribution of each

diagram to the 4-point function. In some cases we write the expressions for momentum

integrals for arbitrary dimension d, to help keep track of numerical factors. At the end of

the computation we always set d = 2. The first diagram is

M4
F1 = (−2) × δijδkl

∑

F

∫

d2p

(2π)2

(

i

4T

)2 (−4i)2

(p2 +m2
F )2

1

4
tr[(1 + γc)2γ̃TF γ̃

F ]
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Figure 5. The 4-point fermion diagrams: (1)M4

F1
, (2)M4

F2
, (3)M4

F3
, (4)M4

F4
, (5+6)M4

F5
+M4

F6
,

(7)M4

F7
, (8)M4

F8
, (9)M4

F9
, (10)M4

F10
, (11)M4

F11
.

×{(−k1 ·k2p++k1+k2 ·p+k2+k1 ·p)(p−)(−k3 ·k4p++k3+k4 ·p+k4+k3 ·p)(p−)}

= δijδkl
∑

F

(−2

T 2

)
∫

d2p

(2π)2
1

(p2 +m2
F )2

×{(p+p−)2k1 · k2k3 · k4 + k1+p−k3+p−p · k2p · k4 + k1+p−k4+p−p · k2p · k3

+k2+p−k3+p−p · k1p · k4 + k2+p−k4+p−p · k1p · k3 − k1+p−p+p−p · k2k3 · k4

−k2+p−p+p−p·k1k3 ·k4 − k3+p−p+p−p·k4k1 ·k2−k4+p−p+p−p·k3k1 ·k2}. (6.11)

There is a symmetry factor of (−2) for the two possible contractions in the loop. This

diagram is not Lorentz invariant by itself, but only when we add it to M4
F2; however it is

easy to see that each diagram separately vanishes.

The following diagram is also not Lorentz invariant by itself,

M4
F3 = (−2) ×

∑

F

(

i

4T

)2(mF

2

)2 ∫ d2p

(2π)2
(−4i)2

(p2 +m2
F )2

1

4
tr[(1 ± γc)(γ̃F )3(1 + γc)(γ̃TF )3]

×{(−k1 · k2p+ + k1+k2 · p+ k2+k1 · p)(−k3 · k4p− + k3−k4 · p+ k4−k3 · p)}δijδkl

= δijδkl
∑

F

(

− m2
F

2T 2

)∫

d2p

(2π)2
1

(p2 +m2
F )2

× {k1 · k2k3 · k4p+p− + k1+k3−k2 · pk4 · p

+k2+k3−k1 · pk4 · p+ k1+k4−k2 · pk3 · p+ k2+k4−k1 · pk3 · p
−k1 · k2p+k3−k4 · p− k1 · k2p+k4−k3 · p− k3 · k4p−k1+k2 · p
−k3 · k4p−k2+k1 · p}. (6.12)

Here we used the fact that for type IIA (upper sign) [γ̃, γc] = 0, while for type IIB (lower
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sign) {γ̃, γc} = 0. The next diagram is:

M4
F4 = δijδkl

∑

F

(

− m2
F

2T 2

)∫

d2p

(2π)2
1

(p2 +m2
F )2

×{k1 ·k2k3 ·k4p+p−+k1−k3+k2 ·pk4 ·p+k2−k3+k1 ·pk4 ·p+k1−k4+k2 ·pk3 ·p+

+k2−k4+k1 · pk3 · p− k1 · k2p−k3+k4 · p− k1 · k2p−k4+k3 · p
−k3 · k4p+k1−k2 · p− k3 · k4p+k2−k1 · p}. (6.13)

Summing the two we obtain the Lorentz-invariant result

M4
F3 +M4

F4 = δijδkl
∑

F

(

− m2
F

2T 2

)∫

d2p

(2π)2
1

(p2 +m2
F )2

p2

×
{

k1 · k2k3 · k4

(

−1

2
+

2

d

)

+ k1 · k4k2 · k3

(

− 1

d

)

+ k1 · k3k2 · k4

(

− 1

d

)}

= δijδkl
∑

F

(

− im2
F

16πT 2

)(

−1 + log

[

Λ2

m2
F

])

×{k1 · k2k3 · k4 − k1 · k4k2 · k3 − k1 · k3k2 · k4}. (6.14)

In the evaluation of M4
F5 the usual contraction gives a more general index structure,

M4
F5 = 4 ×

(

mF

16T

)2 ∫ d2p

(2π)2
16

(p2 +m2
F )2

k1 × k2k3 × k4 (6.15)

×1

4

(

−
(

mF

2

)2

tr[[γi, γj ]γ̃F (1 ± γc)γ̃TF [γk γl]γ̃F (1 ± γc)γ̃TF ]

+p+p−tr[[γi, γj ]γ̃F (1 + γc)[γk, γl]γ̃
T
F (1 ± γc)]

)

=
∑

F

(

− im2
F

16πT 2

)

(k1 · k4k2 · k3 − k1 · k3k2 · k4)(δilδjk − δikδjl) log

[

Λ2

m2
F

]

⇒
∑

F

(

− im2
F

16πT 2

)

(2k1 · k2k3 · k4 − k1 · k3k2 · k4 − k1 · k4k2 · k3)δijδkl log

[

Λ2

m2
F

]

.

In the last line, we applied the permutations (l, 3) ↔ (j, 2) and (l, 3) ↔ (i, 1) to obtain

the terms proportional to δijδkl. There is a symmetry factor of (4) due to 4 possible

combinations of our 2 vertices. Each contraction in the loop gives a different contribution

as can be seen from the two terms in the parenthesis. We also used

tr[[γi, γj ][γk, γl]] = 64(δilδjk − δikδjl),

k1 × k2k3 × k4 = k1 · k4k2 · k3 − k1 · k3k2 · k4,

tr[[γi, γj ][γk, γl]γ̃
T
F γ̃F ] =

1

8
tr[[γi, γj ][γk, γl]]. (6.16)

Next, we have

M4
F6 = 4 × δijδkl

∑

F

(

mF

8T

)2

k1 · k2k3 · k4

∫

d2p

(2π)2
16

(p2 +m2
F )2
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×1

4

{

− p+p−tr[γ̃F (1 ± γc)γ̃TF (1 + γc)] − m2
F

4
tr[γ̃F (1 − γc)γ̃TF γ̃F (1 − γc)γ̃TF ]

}

= δijδkl
∑

F

m2
F

4T 2
k1 · k2k3 · k4

∫

d2p

(2π)2
p2 −m2

F

(p2 +m2
F )2

= δijδkl
∑

F

im2
F

16πT 2

(

− 2 + log

[

Λ2

m2
F

])

k1 · k2k3 · k4. (6.17)

There is a symmetry factor of 4 for the four possible combinations of two vertices.

The following diagrams vanish after setting d = 2,

M4
F7 +M4

F8 = 8 × δijδkl
∑

F

(

− mF

2

)(

− mF

8T

)(

i

4T

)∫

d2p

(2π)2
(−2i)(2)

(p2 +m2
F )2

×{tr[γ̃TF (1 ± γc)γ̃TF γ̃F (1 + γc)γ̃TF γ̃F γ̃F ] − tr[(1 + γc)γ̃TF γ̃F γ̃
T
F (1 ± γc)γ̃TF γ̃F γ̃

T
F ]}

×{(−k1 ·k2p++k2 ·pk1++k1 ·pk2+)p−k3 ·k4+(−k3 ·k4p++k3 ·pk4++k4 ·pk3+)p−k1 ·k2

+(−k1 ·k2p−+k2 ·pk1−+k1 ·pk2−)p+k3 ·k4+(−k3 ·k4p−+k3 ·pk4−+k4 ·pk3−)p+k1 ·k2}

= 8 × δijδkl
∑

F

(

− m2
F

16T 2

)

tr[(±(γc)2 − (γc)2)γ̃TF γ̃F ]

∫

d2p

(2π)2
1

(p2 +m2
F )2

×1

2
{(k1 · k2p

2 − 2k2 · pk1 · p)k3 · k4 + (k3 · k4p
2 − 2k3 · pk4 · p)k1 · k2} = 0. (6.18)

The following diagrams are single vertex diagrams:

M4
F9 =δijδkl

∑

F

i

4T 2

∫

d2p

(2π)2
{k1 ·k2k3 ·pk4++k1 ·k2k4 ·pk3++k3 ·k4k1 ·pk2++k3 ·k4k2 ·pk1+

−3k1 · k2k3 · k4p+ + k1 · k3k2 · k4p+ + k1 · k4k2 · k3p+}
4ip−

p2 +m2
F

1

2
tr[(1 + γc)γ̃TF γ̃F ]. (6.19)

M4
F10 =δijδkl

∑

F

i

4T 2

∫

d2p

(2π)2
{k1 ·k2k3 ·pk4−+k1 ·k2k4 ·pk3−+k3 ·k4k1 ·pk2−+k3 ·k4k2 ·pk1−

−3k1 · k2k3 · k4p− + k1 · k3k2 · k4p− + k1 · k4k2 · k3p−}
4ip+

p2 +m2
F

1

2
tr[(1 ± γc)γ̃TF γ̃F ]. (6.20)

Summing the diagrams M4
F9 and M4

F10 we obtain

M4
F9+M4

F10 =δijδkl
∑

F

(

− 1

8

)

4

T 2
(k1 ·k2k3 ·k4−k1 ·k3k2 ·k4−k1 ·k4k2 ·k3)

∫

d2p

(2π)2
p2

p2+m2
F

=δijδkl
∑

F

(

− im2
F

8πT 2

)

(k1 ·k2k3 ·k4−k1 ·k3k2 ·k4−k1 ·k4k2 ·k3)

(

Λ2

m2
F

−log

[

Λ2

m2
F

])

.(6.21)

Finally,

M4
F11 = 2 × δijδkl

∑

F

mF

8T 2
(k1 · k2k3 · k4 − k1 · k3k2 · k4 − k1 · k4k2 · k3)(2mF )

×
∫

d2p

(2π)2
1

p2 +m2
F

1

2
tr[γ̃TF γ̃F (1 + γc)]
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Figure 6. The 4-point scalar diagrams: (1)M4

B1
, (2)M4

B2
.

= δijδkl
∑

F

im2
F

8πT 2
(k1 · k2k3 · k4 − k1 · k3k2 · k4 − k1 · k4k2 · k3) log

[

Λ2

m2
F

]

.(6.22)

There is a symmetry factor of (2) for 2 vertices, θ1γ̃θ2 and θ2γ̃θ1.

6.3.2 Scalar diagrams

Next, we compute the diagrams with the scalar fields YB running in the loop. There are

two diagrams at one-loop order (see figure 6):

M4
B1 = 2δijδkl

∑

B

∫

d2p

(2π)2

{

m2
Bi

2T
k1 · k2 +

i

2T
k1 · k2p

2 − i

T
k1 · pk2 · p

}

×
{

m2
Bi

2T
k3 · k4 +

i

2T
k3 · k4p

2 − i

T
k3 · pk4 · p

}( −i
p2 +m2

B

)2

= 2δijδkl
∑

B

∫

d2p

(2π)2

(

1

p2 +m2
B

)2{

k1 · k2k3 · k4

(

m4
B

4T 2
− 1

8T 2
p4

)

+
1

8T 2
(k1 · k3k2 · k4 + k1 · k4k2 · k3)p

4

}

= δijδkl
∑

B

im2
B

8πT 2

{

k1 · k2k3 · k4 +

(

Λ2

2m2
B

+
1

2
− log

[

Λ2

m2
B

])

×(−k1 · k2k3 · k4 + k1 · k3k2 · k4 + k1 · k4k2 · k3)

}

, (6.23)

with a symmetry factor of (2) for 2 possible contractions in the loop, and

M4
B2 = δijδkl

∑

B

i

2T 2

∫

d2p

(2π)2
{−2k1 · k2k3 · pk4 · p− 2k3 · k4k1 · pk2 · p

+p2(3k1 · k2k3 · k4 − k1 · k3k2 · k4 − k1 · k4k2 · k3)

+m2
B(−k1 · k2k3 · k4 + k1 · k3k2 · k4 + k1 · k4k2 · k3)}

−i
p2 +m2

B

= δijδkl
∑

B

1

2T 2
(k1 · k2k3 · k4 − k1 · k3k2 · k4 − k1 · k4k2 · k3)

×
∫

d2p

(2π)2
{p2 −m2

B}
1

p2 +m2
B
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= δijδkl
∑

B

im2
B

4πT 2
(k1 · k2k3 · k4 − k1 · k3k2 · k4 − k1 · k4k2 · k3)

×
(

Λ2

2m2
B

− log

[

Λ2

m2
B

])

. (6.24)

6.3.3 Conclusion

If we sum our results, ignoring the quadratic divergence, we find the finite result

〈Xi(k1)Xj(k2)Xk(k3)Xl(k4)〉 = −δijδkl
i∆T

T 2
(k1 · k2k3 · k4 − k1 · k3k2 · k4 − k1 · k4k2 · k3)

+(i, 1) ↔ (k, 3) + (i, 1) ↔ (l, 4). (6.25)

Note that the finite contribution proportional to 1
16πT 2 (

∑

Bm
2
B −∑F m

2
F ) vanished due

to our constraint. The quadratic divergence does not vanish in the same manner, and we

believe it will vanish once we include loops of other fields (which are independent of m),

such as the metric and the kappa gauge-fixing ghosts. This 4-point function, with the

addition of the tree-level result (4.26), is generated by the Minkowskian effective action:

S4 = −
(

1

T
+

∆T

T 2

)
∫

d2σ

{

1

8
(∂αX · ∂αX)2 − 1

4
∂αX · ∂βX∂αX · ∂βX

}

= − 1

T ′

∫

d2σ

{

1

8
(∂αX̃ · ∂αX̃)2 − 1

4
∂αX̃ · ∂βX̃∂αX̃ · ∂βX̃

}

(6.26)

We see that the in terms of the rescaled fields X̃ and tension T ′ the effective action is

precisely the NG action (6.1) expanded to fourth order in derivatives. This is expected

from the analysis of section 3, where the effective action was constrained to be the NG

action to this order, but in our computation it arises non-trivially. Note that for D = 3

the two terms in (6.26) are the same, but our analysis is still valid.

6.4 4-point function: higher derivative corrections

In the previous subsection we calculated the 4-point function to lowest order in the external

momenta, so effectively we did the loop computations for zero external momenta. In this

subsection we are interested in the corrections at six-derivative order. We will compute

the 4-point function exactly as a function of the momenta, and then expand it in powers

of k to extract this. To simplify our calculation, we take all the external momenta to be

on-shell (k2
i = 0). This is possible since contributions that are not on-shell will create terms

in the effective action that are proportional to the equation of motion, and we know such

terms can always be swallowed by field redefinitions, and therefore do not contribute to

the partition function. We use the Mandelstam variables, s = (k1 + k2)
2, t = (k1 + k3)

2,

u = (k1 + k4)
2, and introduce the variable k = k1 + k2 for the incoming momentum in a

specific channel. We have the on-shell relation s+t+u = 0, and two-dimensional kinematics

implies that also stu = 0 (we used this above in arguing that the c5 term in (2.4) is trivial).

Apart from the UV divergences, which we expect to cancel between fermion and scalar

diagrams, we expect to find a branch-cut at s = −4m2 for diagrams with a field of mass m
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running in the loop. This branch cut, indicating that the fields running in the loop become

on-shell, is typical for 2 → 2 scattering.

Naively, by power counting, at one-loop the six-derivative terms should be independent

of m so we are not interested in these terms (since we are only interested in m-dependent

contributions). However, a dependence on m can appear through logarithmic divergences,

and so we should carefully analyze the diagrams that were quadratically divergent at four-

derivative order, and thus, may be logarithmically divergent at six-derivative order. In our

case these are the diagrams M4
F1,F2 and M4

B1. There are other, single vertex diagrams,

which are also quadratically divergent, but in these the zero momentum computation was

exact, and they have no additional momentum dependence. We note that in some of

the diagrams that we do not take into account there are non-vanishing six-derivative con-

tributions which are not m-dependent, and are finite. But here we focus only on the

m-dependent terms. Note that when discussing the m → 0 limit one has to be careful,

since this limit does not commute with the small momentum limit that we analyze here.

6.4.1 Fermion diagrams

The diagram M4
F1 is given by:

M4
F1 = (−1)×δijδkl

∑

F

∫

d2p

(2π)2

(

i

4T

)2 (−4i)2p−(p− − k−)

(p2+m2
F )((p−k)2+m2

F )

1

4
tr[(1+γc)2γ̃TF γ̃F ]

1

2

×{(k1 ·k2p+−k1+k2 ·p−k2+k1 ·p)(k3 ·k4(2p+−k+)−k3+k4 ·(2p−k)−k4+k3 ·(2p−k))
+(k3 ·k4p+−k3+k4 ·p−k4+k3 ·p)(k1 ·k2(2p+−k+)−k1+k2 ·(2p−k)−k2+k1 ·(2p−k))}

=
2

T 2
δijδkl

∑

F

∫ 1

0
dα

∫

d2p

(2π)2
α(1 − α)

(p2 +m2
F + k2α(1 − α))2

k−k−

×{k1 ·k2k3 ·k4p+p+−k1 ·k2(k3 ·pk4+p++k4 ·pk3+p+)−k3 ·k4(k2 ·pk1+p++k1 ·pk2+p+)

+k1 ·pk3 ·pk2+k4++k2 ·pk3 ·pk1+k4++k1 ·pk4 ·pk2+k3++k2 ·pk4 ·pk1+k3+}=0. (6.27)

Similarly, we find that M4
F2 = 0 exactly.

6.4.2 Scalar diagrams

The only scalar diagram that can contribute an m-dependence is M4
B1. We write only the

term proportional to δijδkl:

M4
B1 = 2

(

i

2T

)2
∑

B

∫

d2p

(2π)2
[m2

Bk1 ·k2+k1 ·k2p·(p−k)−k1 ·pk2 ·(p−k)−k2 ·pk1 ·(p−k)]

×[m2
Bk3 ·k4+k3 ·k4p·(p−k)−k3 ·pk4 ·(p−k)−k4 ·pk3 ·(p−k)]

−i
p2+m2

B

−i
(p−k)2+m2

B

=
1

2T 2

∑

B

∫

d2p

(2π)2
[(m2

B + p2)k1 · k2 − 2k1 · pk2 · p]

×[(m2
B + p2)k3 · k4 − 2k3 · pk4 · p]

1

p2 +m2
B

1

(p− k)2 +m2
B

=
1

2T 2

∑

B

∫ 1

0
dα

∫

d2p

(2π)2
1

(p2 +m2
B + k2α(1 − α))2
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×[(m2
B + (p + k(1 − α))2)k1 · k2 − 2k1 · (p+ k(1 − α))k2 · (p+ k(1 − α))]

×[(m2
B + (p + k(1 − α))2)k3 · k4 − 2k3 · (p+ k(1 − α))k4 · (p+ k(1 − α))]

=
1

2T 2

∑

B

∫ 1

0
dα

∫

d2p

(2π)2
[(m2

B + p2)k1 · k2 − 2k1 · pk2 · p]

×[(m2
B + p2)k3 · k4 − 2k3 · pk4 · p]

1

(p2 +m2
B + k2α(1 − α))2

=
i

32πT 2

∑

B

[

4sm4
B tanh−1

[
√

s

s+ 4m2
B

](

1 +
4m2

B

s

)− 1
2

+{−s2 + t2 + u2} ·
{

m2
B

2
+

(s+ 4m2
B)2

3
√

s(s+ 4m2
B)

tanh−1

[
√

s

s+ 4m2
B

]

+
1

18
(−5s−24m2

B−9Λ2+3(s+6m2
B) log

[

m2
B

Λ2

])}]

. (6.28)

We can check that we reproduce the leading term (6.23) we computed above and we see

there is a branch cut at s = −4m2
B , as expected. Taking k → 0, we find up to order k6

M4
B1 =

i

32πT 2
δijδkl

∑

B

[

m2
Bs

2 − 1

6
s3 +

{

−m2
B − Λ2 +

(

2m2
B +

s

3

)

log

[

Λ2

m2
B

]}

tu

]

.(6.29)

We see that there is apparently a logarithmic m-dependent term at six-derivative order,

but in fact it is proportional to stu which vanishes on-shell. Thus, at one-loop order we

find no corrections to the six-derivative four-scalar term in our effective action. This is not

too surprising, since the relevant term is only non-trivial for D > 3, while our computation

here is essentially independent of D.

6.5 6-point function

In this section we compute the six-point function

〈Xi(k1)Xj(k2)Xk(k3)Xl(k4)Xm(k5)Xn(k6)〉. We write here only the scalar contribu-

tion to six-derivative terms. We compute the diagrams for zero external momenta, and so

we expect the result to be proportional to
∑

Bm
2
B log[m2

B/Λ
2]. We know the fermionic

contribution should be
∑

F m
2
F log[m2

F /Λ
2], with the same proportionality constant and

opposite sign, in order to have a finite result. Thus we skip the explicit computation of

fermionic diagrams, and calculate only the scalar contribution, from which we keep only

the term proportional to m2
B log[m2

B ].

As in previous subsections, we focus only on the δijδklδmn terms. There are 3 scalar

diagrams (see figure 7). The first is:

M6
B1 = 8 ×

(

i

2T

)3
∑

B

∫

d2p

(2π)2

( −i
m2
B + p2

)3

(k1 · k2(p
2 +m2) − 2k1 · pk2 · p)

×(k3 · k4(p
2 +m2) − 2k3 · pk4 · p)(k5 · k6(p

2 +m2
B) − 2k5 · pk6 · p)

=
i

2πT 3

∑

B

{k1 · k2k3 · k4k5 · k6

(

−1

3
Λ2 +

13

24
m2
B − 1

4
m2
B log

[

Λ2

m2
B

])
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Figure 7. The 6-point scalar diagrams: (1)M6

B1
, (2)M6

B2
, (3)M6

B3
.

+

(

Λ2

6
+
m2
B

24
+
m2
B

4
log

[

m2
B

Λ2

])

[k1 · k2k3 · k5k4 · k6 + k1 · k2k3 · k6k4 · k5

+(1; 2) ↔ (3; 4) + (1; 2) ↔ (5; 6)]

−1

6

(

Λ2

2
+

5m2
B

4
+

3

2
m2
B log

[

m2
B

Λ2

])

[k1 · k3(k2 · k5k4 · k6 + k2 · k6k4 · k5)

+k1 · k4(k2 · k5k3 · k6 + k2 · k6k3 · k5) + (1; 2) ↔ (3; 4) + (1; 2) ↔ (5; 6)]}. (6.30)

The factor of (8) here is a symmetry factor for the possible contractions in the loop. Next,

M6
B2 = 2 ×

(

i

2T

)(

i

2T 2

)

∑

B

∫

d2p

(2π)2
(−i)2

(p2 +m2
B)2

(k1 · k2(p
2 +m2) − 2k1 · pk2 · p)

×{−2k3 · k4k5 · pk6 · p− 2k5 · k6k3 · pk4 · p+ 3k3 · k4k5 · k6p
2

−p2(k3 ·k5k4 ·k6+k3 ·k6k4 ·k5)+m
2
B(−k3 ·k4k5 ·k6+k3 ·k5k4 ·k6+k4 ·k5k3 ·k6)}

=
i

2T 3

∑

B

∫

d2p

(2π)2
1

(p2 +m2
B)2

×
{

k1 ·k2k3 ·k4k5 ·k6

[

(p2+m2
B)

(

p2

(

3− 4

d

)

−m2
B

)

+
2

d
p2m2

B−2p4

(

− 4

d(d+2)
+

3

d

)]

+k1 · k2(k3 · k5k4 · k6 + k3 · k6k4 · k5)

[

(p2 +m2
B)(−p2 +m2

B) +
2

d
p2(−m2

B + p2)

]

+k3 · k4(k1 · k5k2 · k6 + k1 · k6k2 · k5)

(

4

d(d + 2)
p4

)

+k5 · k6(k1 · k3k2 · k4 + k1 · k4k2 · k3)

(

4

d(d + 2)
p4

)}

. (6.31)

There is a symmetry factor of (2) for internal contractions. We should now sum over the

two permutations (k1, k2) → (k3, k4) and (k1, k2) → (k5, k6), and then we get

M6
B2 =

1

2T 3

∑

B

∫

d2p

(2π)2
1

(p2 +m2
B)2

×
{

3k1 ·k2k3 ·k4k5 ·k6

[

(p2+m2
B)

(

p2

(

3− 4

d

)

−m2
B

)

+
2

d
p2m2

B−2p4

(

− 4

d(d+2)
+

3

d

)]

+[k1 ·k2(k3 ·k5k4 ·k6+k3 ·k6k4 ·k5)+k3 ·k4(k1 ·k5k2 ·k6+k1 ·k6k2 ·k5)+(1; 2)↔(3; 4)

+(1; 2) ↔ (5; 6)] ×
[

(p2 +m2
B)(−p2 +m2

B) +
2

d
p2(−m2

B + p2) +
8

d(d+ 2)
p4

]}
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=
i

4πT 3

∑

B

[

Λ2

2
+

3

2
m2
B +

3

2
m2
B log

[

m2
B

Λ2

]]

{−3k1 · k2k3 · k4k5 · k6

+[k1 · k2(k3 · k5k4 · k6 + k3 · k6k4 · k5) + k3 · k4(k1 · k5k2 · k6 + k1 · k6k2 · k5)

+(1; 2) ↔ (3; 4) + (1; 2) ↔ (5; 6)]}. (6.32)

Finally,

M6
B3 =

i

2T 3

∑

B

∫

d2p

(2π)2
−i

p2 +m2
B

×{k1 · k2k3 · k4k5 · k6(9p
2 − 3m2) − 2k1 · pk2 · pk3 · k4k5 · k6

−2k3 · pk4 · pk1 · k2k5 · k6 − 2k5 · pk6 · pk3 · k4k1 · k2

+(m2−p2)[k1 ·k2(k3 ·k5k4 ·k6+k3 ·k6k4 ·k5)+(1; 2)↔(3; 4)+(1; 2)↔(5; 6)]

−2[k1 · pk2 · p(k3 · k5k4 · k6 + k3 · k6k4 · k5) + (1; 2) ↔ (3; 4) + (1; 2) ↔ (5; 6)]}

=
1

2πT 3

∑

B

(

1

2
Λ2 +

3

4
m2
B log

[

m2
B

Λ2

])

{3k1 · k2k3 · k4k5 · k6

−[k1 · k2(k3 · k5k4 · k6 + k3 · k6k4 · k5) + (1; 2) ↔ (3; 4) + (1; 2) ↔ (5; 6)]}. (6.33)

Summing our results, and putting in the necessary fermionic contributions to cancel the

divergences, we obtain the following 6-point function,

〈Xi(k1)Xj(k2)Xk(k3)Xl(k4)Xm(k5)Xn(k6)〉 =
i∆T

T 3
δijδklδmn

×{k1 · k2k3 · k4k5 · k6 − [k1 · k2(k3 · k5k4 · k6 + k4 · k6k3 · k5) + (k1, k2) → (k3, k4)

+(k1, k2) → (k5, k6)] + [k1 · k3(k2 · k5k4 · k6 + k2 · k6k4 · k5)

+k1 · k4(k2 · k5k3 · k6 + k2 · k6k3 · k5) + (k1, k2) → (k3, k4) + (k1, k2) → (k5, k6)]}
+ permutations on [(i, 1), (j, 2), (k, 3), (l, 4), (m, 5), (n, 6)]}. (6.34)

However, it turns out that when we use the on-shell constraints this exactly vanishes.

Thus, the terms with six derivatives and six X’s in our action precisely agree with their

Nambu-Goto values, as expected from our general arguments of section 3.

7 Conclusions

In this paper we analyzed the low-energy effective action of confining strings. We computed

its partition function using a zeta-function regularization, argued in [9] to be the unique

regularization which gives results that are independent of the UV cutoff (as we expect).

We showed that up to four-derivative order this action must agree with the Nambu-Goto

form, generalizing a result of Lüscher and Weisz for D = 3. At the six-derivative order

there are three possible terms for general D, and we showed that our considerations do

not constrain the term c4 that does not appear in the Nambu-Goto action (the two terms

appearing in Nambu-Goto, c6 and c7, are uniquely determined). Somewhat surprisingly,

we found that this coefficient does not contribute to the partition function on the torus at

the first possible order, corresponding to corrections to closed string energies of order 1/L5.
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Thus, the corrections to energy levels coming from this term must sum to zero separately

at each energy level. In particular we claim that the closed string ground state energy is

not corrected at order 1/L5 (compared to the Nambu-Goto result), so its first corrections

arise at least at order 1/L7. For the special case of D = 3 we find that there is only one

coefficient in the effective action at six-derivative order, which is uniquely determined, so

that all energy levels must agree with the Nambu-Goto results up to order 1/L5. This

seems to be consistent with lattice results indicating that the corrections to Nambu-Goto

for the ground state are very small [27, 28]; it is not consistent with lattice results for

percolation presented in [33], but it is not clear if these results are reliable and if the

corresponding string theory has a weakly coupled limit where our results should apply. It

would be interesting to use lattice simulations to measure the value of c4 for interesting

confining theories with D > 3, such as the pure Yang-Mills theory in D = 4.

In the partition function on the annulus, we found that the c4 term does contribute

corrections to closed string energies when D > 3. Recall that while the torus partition

function sums over all closed string states with weight one, the annulus partition function

sums only over specific closed string states, which have some overlap with the boundary

state, and the sum comes with different coefficients for different states.

We then computed the specific coefficients appearing in the effective action in a large

class of holographic backgrounds, by integrating out the massive fields on the worldsheet

of strings in confining backgrounds, to leading order in the curvature. We verified that

up to four-derivatives the Nambu-Goto action is reproduced, and we showed that also

at six-derivative order the effective action precisely agrees with Nambu-Goto. Somewhat

surprisingly, we did not find any c4 term; it is possible that such a term only arises at

higher orders, or that it is constrained to vanish by considerations different than the

ones we used here (for instance, by the constraints arising in the formalism of Polchinski

and Strominger). It would be interesting to understand this better. In any case, in the

backgrounds we study this means that at one-loop order there is no correction to the

partition function at six-derivative order, both on the torus and on the annulus (at least

with the specific boundary terms we chose).

Some possible generalizations of our analysis are:

• It would be interesting to go to higher orders in the derivative expansion, in particular

to see at what order the effective action for D = 3 can first deviate from the Nambu-

Goto form, and at what order corrections to the ground state energy (for any D) can

start appearing.

• It would be interesting to go to two-loop order in the computation of the effective

action in holographic backgrounds, to see whether the c4 term is generated at this

order or not. In particular, it would be interesting to see whether the effective action

computed in this formalism precisely agrees with the Nambu-Goto action (to all

orders in the derivative expansion), or whether deviations occur at some order, and,

if so, at what order the deviations first occur.

• We computed the effective action and the resulting partition function, but we did not
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use the effective action to compute the corrections to specific energy levels; it would

be interesting to do this.

• We focused on closed strings, and assumed there are no boundary terms. It would

be interesting to analyze what are the possible boundary terms that could contribute

up to the order we worked in, and to compute the corresponding corrections to

open string energies. In particular, it would be interesting to see which boundary

terms appear in the computation of the quark-anti-quark potential in holographic

backgrounds (see [40] for the expansion of the action of a holographic open confining

string to quadratic order in fluctuations).

• We assumed that the only massless fields on the worldsheet are the transverse fluctu-

ations, but in many interesting cases (like supersymmetric gauge theories) there are

additional massless fields on the worldsheet. It would be interesting to generalize our

analysis to these cases, to see what are the allowed terms in the effective action and

whether they contribute to the partition function or not.

• As we mentioned in section 2, our analysis does not apply directly to k-strings since

they have light states on their worldsheet in the large N limit; it would be interesting

to understand better the form of the low-energy effective action on k-strings, and to

match it with recent lattice results.

• We considered here only orientable strings, which are relevant for SU(N) gauge theo-

ries. For SO(N) or USp(N) theories the confining string is unoriented, so additional

diagrams (such as a Klein bottle) are possible. It would be interesting to check if

these diagrams give additional constraints on the effective action, and to compute

the effective action for holographic backgrounds that correspond to such theories.

• In our analysis we wrote the effective action using only the physical transverse

fluctuations. It would be interesting to compare this, and our constraints on

the possible terms, to other formalisms, such as working in a Poincaré invariant

formalism and adding terms involving the extrinsic curvature of the worldsheet

(such as the “rigidity term” [41, 42]), and the Polchinski-Strominger approach [2].

The standard “rigidity term” seems to be trivial in our long-string effective action

(in the sense that we can get rid of it by field definitions) up to the order that we

work in, but it may appear at higher orders.

• It may also be possible to obtain inequalities on coefficients in the effective action by

using unitarity considerations, as (for instance) in [43]. For example, the positivity

of c2 (which is true) may be argued just from these considerations. It would be

interesting to incorporate these additional constraints into our analysis.
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A Computations for section 3

We follow the computation technique used in [9], involving zeta function regularization,

and we perform our calculations in position space. The Feynman bubble diagrams

appearing in the partition function computations will be sums over the modes of the

worldsheet fields. These sums are typically UV divergent, and must be regularized.

Fortunately, the regularization scheme used in [9] is claimed to produce a unique finite

result for any calculation which is not cutoff-dependent. We know the partition function

is finite. Furthermore, we expect it to be finite diagram by diagram (in the low-energy

effective action), since in our full action the divergences cancel between scalars and

fermions (while the low-energy effective action includes only scalars). The diagrams should

also fulfill requirements such as scale invariance and other requirements which are listed

in [9]. The claim is that for such a calculation, there is a unique finite result, which is

obtained using the regularization scheme of [9].

In this scheme we analytically continue the sums using the zeta function, so that a

generic sum is written as

∞
∑

n,m=−∞

manb

m2 + n2
≡

∞
∑

n,m=−∞

ma+snb+s
′

m2 + n2
|s,s′=0 . (A.1)

This can be further manipulated such that the divergent part will always appear as a zeta

function, as we will see in subsection A.2. The difference of this scheme from dimensional

regularization is that there is no single parameter which we perform the analytic continua-

tion in. We analytically continue and regularize each sum by itself. This will give us finite

results as long as we do not hit any poles of the zeta function, that is as long as we do not

have logarithmically divergent sums (ζ(1)). This is similar to dimensional regularization,

where only logarithmic divergences are seen.

In the first two subsections we define some modular functions and compute divergent

sums which appear in our computation. We explicitly write their regularization using the

zeta function. In the following subsections we write the details of the partition function

computation at order O(T−1) and O(T−2), both on the annulus and on the torus. Finally,

we explain the numerical method used to determine the q̃ expansion of F (q).
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A.1 Modular functions

Below is a list of functions which are related to the Dedekind eta function (3.4), and have

nice properties under modular transformations. We define q, q̃, τ, τ̃ as in (3.2). We recall

the Eisenstein series E2k(q),

E2k(q) = 1 +
2

ζ(1 − 2k)

∞
∑

n=1

n2k−1qn

1 − qn
, (A.2)

and define the functions H2,k(q) (for even k):

H2,k(q) ≡
ζ(1 − k)

2
q
∂

∂q
Ek(q) =

∞
∑

n=1

nkqn

(1 − qn)2
. (A.3)

For the cases we will encounter these are given by

H2,2(q) =
E4(q) − E2(q)

2

288
, H2,4(q) =

E2(q)E4(q) − E6(q)

720
. (A.4)

These functions obey the modular transformation properties:

E2(q)=−6i

π
τ̃+τ̃2E2(q̃), H2,2(q)=

log(q̃)2

4π4

[

− 1

8
− 1

48
log(q̃)E2(q̃)+

1

4
log(q̃)2H2,2(q̃)

]

,

Ek(q) = τ̃kEk(q̃), H2,k(q)=− ikζ(1−k)
4π

τ̃k+1Ek(τ̃)+τ̃
k+2H2,k(q̃) ∀k>2. (A.5)

Finally, we define the function F (qann.):

F (qann.) =

∞
∑

n,r=1

nr(n+ r) coth

(

nπL

2R

)

coth

(

(n+ r)πL

2R

)

coth

(

rπL

2R

)

,

=

∞
∑

r>n,n=1

nr(n− r) coth

(

nπL

2R

)

coth

(

(n− r)πL

2R

)

coth

(

rπL

2R

)

. (A.6)

A.2 Regularization of sums

Below we list the sums which appear in our computations. We write the sums appearing in

the annulus computation, but they are simply related to the ones appearing for the torus.

The list includes diverging sums, which we manipulate such that the divergence is always

expressed using a zeta function.

∞
∑

m=−∞

1
n2

R2 + 4m2

L2

=
πRL

2n
coth

(

nπL

2R

)

,
∞
∑

m=1

1
n2

R2 + 4m2

L2

=
πRL

4n
coth

(

nπL

2R

)

− R2

2n2

∞
∑

m=−∞

m2

n2

R2 + 4m2

L2

=

∞
∑

m=−∞

m2+s

n2

R2 + 4m2

L2

|s=0 =
L2

4

∞
∑

m=−∞
ms

(

1 − n2

R2

1
n2ms

R2 + 4m2

L2

)

|s=0

=
L2

4
(1 + 2ζ(0)) − L3nπ

8R
coth

(

πnL

2R

)

= −L
3nπ

8R
coth

(

πnL

2R

)

,

∞
∑

m=−∞

m4

n2

R2 + 4m2

L2

=

∞
∑

m=−∞

m4+s

n2

R2 + 4m2

L2

|s=0 =
L2

4

∞
∑

m=−∞
m2+s

(

1 − n2

R2

1
n2

R2 + 4m2

L2

)

|s=0
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=
L2

2
ζ(−2) − L2n2

4R2

∞
∑

m=−∞

m2+s

n2

R2 + 4m2

L2

=
L5n3π

32R3
coth

(

nπL

2R

)

,

∞
∑

n=1

ns coth

(

nπL

2R

)

=

∞
∑

n=1

ns
e

πnL
R + 1

e
πnL

R − 1
=

∞
∑

n=1

ns
(

1 +
2

e
πnL

R − 1

)

=ζ(−s) + 2

∞
∑

n=1

nsqnann.

1 − qnann.

= ζ(−s)Es+1(q
ann.),

∞
∑

n=1

ns coth2

(

nπL

2R

)

=

∞
∑

n=1

ns

(

e
πnL

R + 1

e
πnL

R − 1

)2

=

∞
∑

n=1

ns

(

1 + 4
e

πnL
R

(e
πnL

R − 1)2

)

= ζ(−s) + 4

∞
∑

n=1

nsqnann.

(1 − qnann.)
2

= ζ(−s) + 4H2,s(q
ann.). (A.7)

A.3 The annulus

The Green’s function on a cylinder worldsheet with rectangular domain (R,L) is

G(σ1, σ0;σ1
′, σ0

′) =
2

π2RL

∞
∑

n=1,m=−∞

sin(nπσ1
R ) sin(nπσ1

′

R )e
2πim(σ0−σ0

′)

L

n2

R2 + 4m
2

L2

. (A.8)

Here L is the periodic direction, and 0 ≤ σ1 ≤ R.

A.3.1 Partition function at O(L−3)

This computation was already performed in [9], and we reproduce it here for completeness.

The diagrams at this order are (see figure 1)

Iann.
1 =

∫

d2σ∂α∂
α′

G∂β∂
β′

G =

∫

d2σ{(∂0∂
′
0G+ ∂1∂

′
1G)(∂0∂

′
0G+ ∂1∂

′
1G)}

=
2π2L

R3
H2,2(q

ann.) = − 1

LR
+

2π

3L2
E2(q̃) +

32π2R

L3
H2,2(q̃),

Iann.
2 =

∫

d2σ∂α∂β′G∂α∂β
′

G =

∫

d2σ{∂0∂
′
0G∂0∂

′
0G+ ∂1∂

′
1G∂1∂

′
1G}

=
π2L

R3

[

2

(24)2
E2

2(qann.) +H2,2(q
ann.)

]

=
16π2R

L3

[

2

(24)2
E2

2(q̃) +H2,2(q̃)

]

, (A.9)

where

∂α =
∂

∂σα
, ∂α∂

′
αG = lim

σ′→σ
∂α∂

′
αG(σ, σ′). (A.10)

In this notation, we first take the derivative with respect to σ or σ′ and only then take

the limit σ → σ′. One should notice that an odd number of derivatives of the propagators

with respect to σ0 gives a sum of antisymmetric functions of σ0 − σ0′, and therefore

vanishes as σ0 → σ0′.

Below are the details of the computation:

∫

d2σ∂1∂
′
1G∂1∂

′
1G
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=
4

R6L2

∞
∑

n,k=1

∞
∑

m,l=−∞

n2k2

(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)

∫

d2σ cos2

(

nπσ

R

)

cos2

(

kπσ

R

)

=
1

R5L

{(

∑

m,n

n2

n2

R2 + 4m2

L2

)(

∑

k,l

k2

k2

R2 + 4l2

L2

)

+
1

2

∑

n

n4

(

∑

m

1
n2

R2 + 4m2

L2

)(

∑

l

1
n2

R2 + 4l2

L2

)}

=
π2L

4R3

(

(ζ(−1)E2(q
ann.))2 +

1

2
(ζ(−2) + 4H2,2(q

ann.))

)

, (A.11)

∫

d2σ∂0∂
′
0G∂1∂

′
1G

=
16

R4L4

∞
∑

n,k=1

∞
∑

m,l=−∞

n2l2
(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)

∫

d2σ cos2

(

nπσ

R

)

sin2

(

kπσ

R

)

=
4

R3L3

{(

∑

m,n

n2

n2

R2 + 4m2

L2

)(

∑

k,l

l2

k2

R2 + 4l2

L2

)

− 1

2

∑

n

(

∑

m

n2

n2

R2 + 4m2

L2

)(

∑

l

l2

n2

R2 + 4l2

L2

)}

= −π
2L

4R3

(

(ζ(−1)E2(q
ann.))2 − 1

2
(ζ(−2) + 4H2,2(q

ann.))

)

, (A.12)

∫

d2σ∂0∂
′
0G∂0∂

′
0G

=
64

R2L6

∞
∑

n,k=1

∞
∑

m,l=−∞

m2l2
(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)

∫

d2σ sin2

(

nπσ

R

)

sin2

(

kπσ

R

)

=
16

RL5

{(

∑

m,n

m2

n2

R2 + 4m2

L2

)(

∑

k,l

l2

k2

R2 + 4l2

L2

)

+
1

2

∑

n

(

∑

m

m2

n2

R2 + 4m2

L2

)(

∑

l

l2

n2

R2 + 4l2

L2

)}

=
π2L

4R3

(

(ζ(−1)E2(q
ann.))2 +

1

2
(ζ(−2) + 4H2,2(q

ann.))

)

. (A.13)

A.3.2 Partition function at O(L−5)

At this order there are both 2-loop and 3-loop diagram contributions (see figures 1 and 2).

At two loops there are two possible contractions,

Iann.
3 =

∫

d2σ∂α∂
α′

∂β∂
β′

G∂γ∂
γ′G

=

∫

d2σ(∂0∂
′
0∂0∂

′
0G+ ∂1∂

′
1∂1∂

′
1G+ 2∂1∂

′
1∂0∂

′
0G)(∂1∂

′
1G+ ∂0∂

′
0G)

= −4
π4L

R5
H2,4(q

ann.) = −4
π4L

R5

(

4R5

15πL5
E4(τ̃) −

64R6

L6
H2,4(q̃)

)

, (A.14)

Iann.
4 =

∫

d2σ∂α∂β∂γ′G∂
α∂β∂γ

′

G

=

∫

d2σ{∂0∂0∂
′
0G∂0∂0∂

′
0G+ 2∂0∂1∂

′
1G∂0∂1∂

′
1G+ ∂′0∂1∂1G∂

′
0∂1∂1G

+2∂1∂0∂
′
0G∂1∂0∂

′
0G+ ∂0∂0∂

′
1G∂0∂0∂

′
1G+ ∂1∂1∂

′
1G∂1∂1∂

′
1G}

= 2
π4L

R5
H2,4(q

ann.). (A.15)
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Below are the details of the computation:

∫

d2σ∂1∂
′
1∂1∂

′
1G∂1∂

′
1G

=
4π2

R8L2

∞
∑

n,k=1

∞
∑

m,l=−∞

n4k2

(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)

∫

d2σ sin2

(

nπσ

R

)

cos2
(

kπσ

R

)

=
π2

R7L

{(

∑

m,n

n4

n2

R2 + 4m2

L2

)(

∑

k,l

k2

k2

R2 + 4l2

L2

)

− 1

2

∑

n

n6

(

∑

m

1
n2

R2 + 4m2

L2

)(

∑

l

1
n2

R2 + 4l2

L2

)}

=
π4L

4R5

(

ζ(−3)ζ(−1)E2(q
ann.)E4(q

ann.) − 1

2
(ζ(−4) + 4H2,4(q

ann.))

)

, (A.16)

∫

d2σ∂1∂
′
1∂1∂1G∂1∂

′
1G

= − 4π2

R8L2

∞
∑

n,k=1

∞
∑

m,l=−∞

n4k2

(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)

∫

d2σ cos2

(

nπσ

R

)

cos2
(

kπσ

R

)

= − π2

R7L

{(

∑

m,n

n4

n2

R2 + 4m2

L2

)(

∑

k,l

k2

n2

R2 + 4l2

L2

)

+
1

2

∑

n

n6

(

∑

m

1
n2

R2 + 4m2

L2

)(

∑

l

1
n2

R2 + 4l2

L2

)}

= −π
4L

4R5

(

ζ(−3)ζ(−1)E2(q
ann.)E4(q

ann.) +
1

2
(ζ(−4) + 4H2,4(q

ann.))

)

, (A.17)

∫

d2σ∂1∂
′
1∂1∂

′
1G∂0∂

′
0G

=
16π2

R6L4

∞
∑

n,k=1

∞
∑

m,l=−∞

n4l2
(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)

∫

d2σ sin2

(

nπσ

R

)

sin2

(

kπσ

R

)

=
4π2

R5L3

{(

∑

m,n

n4

n2

R2 + 4m2

L2

)(

∑

k,l

l2

k2

R2 + 4l2

L2

)

+
1

2

∑

n

n4

(

∑

m

1
n2

R2 + 4m2

L2

)(

∑

l

l2

n2

R2 + 4l2

L2

)}

=
π4L

4R5

{

− ζ(−1)ζ(−3)E2(q
ann.)E4(q

ann.) − 1

2
(ζ(−4) + 4H2,4(q

ann.))

}

, (A.18)

∫

d2σ∂1∂
′
1∂0∂

′
0G∂1∂

′
1G

=
16π2

R6L4

∞
∑

n,k=1

∞
∑

m,l=−∞

n2m2k2

(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)

∫

d2σ cos2
(

nπσ

R

)

cos2

(

kπσ

R

)

=
4π2

R5L3

{(

∑

m,n

n2m2

n2

R2 + 4m2

L2

)(

∑

k,l

k2

k2

R2 + 4l2

L2

)

+
1

2

∑

n

n4

(

∑

m

m2

n2

R2 + 4m2

L2

)(

∑

l

1
n2

R2 + 4l2

L2

)}

=
π4L

4R5

{

− ζ(−1)ζ(−3)E2(q
ann.)E4(q

ann.) − 1

2
(ζ(−4) + 4H2,4(q

ann.))

}

, (A.19)

∫

d2σ∂1∂1∂0∂
′
0G∂1∂

′
1G

= − 16π2

R6L4

∞
∑

n,k=1

∞
∑

m,l=−∞

n2m2k2

(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)

∫

d2σ sin2

(

nπσ

R

)

cos2

(

kπσ

R

)
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= − 4π2

R5L3

{(

∑

m,n

n2m2

n2

R2 + 4m2

L2

)(

∑

k,l

k2

k2

R2 + 4l2

L2

)

− 1

2

∑

n

n4

(

∑

m

m2

n2

R2 + 4m2

L2

)(

∑

l

1
n2

R2 + 4l2

L2

)}

=
π4L

4R5

{

ζ(−1)ζ(−3)E2(q
ann.)E4(q

ann.) − 1

2
(ζ(−4) + 4H2,4(q

ann.))

}

, (A.20)

∫

d2σ∂1∂
′
1∂0∂

′
0G∂0∂

′
0G = −

∫

d2σ∂1∂
′
1∂0∂0G∂0∂

′
0G

=
64π2

R4L6

∞
∑

n,k=1

∞
∑

m,l=−∞

n2m2l2
(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)

∫

d2σ cos2
(

nπσ

R

)

sin2

(

kπσ

R

)

=
16π2

R3L5

{(

∑

m,n

n2m2

n2

R2 + 4m2

L2

)(

∑

k,l

l2

k2

R2 + 4l2

L2

)

− 1

2

∑

n

n2

(

∑

m

m2

n2

R2 + 4m2

L2

)(

∑

l

l2

n2

R2 + 4l2

L2

)}

=
π4L

4R5

{

ζ(−1)ζ(−3)E2(q
ann.)E4(q

ann.) − 1

2
(ζ(−4) + 4H2,4(q

ann.))

}

, (A.21)

∫

d2σ∂0∂
′
0∂0∂

′
0G∂1∂

′
1G

=
64π2

R4L6

∞
∑

n,k=1

∞
∑

m,l=−∞

m4k2

(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)

∫

d2σ cos2
(

nπσ

R

)

sin2

(

kπσ

R

)

=
16π2

R3L5

{(

∑

m,n

m4

n2

R2 + 4m2

L2

)(

∑

k,l

k2

k2

R2 + 4l2

L2

)

− 1

2

∑

n

n2

(

∑

m

m4

n2

R2 + 4m2

L2

)(

∑

l

1
n2

R2 + 4l2

L2

)}

=
π4L

4R5

{

ζ(−1)ζ(−3)E2(q
ann.)E4(q

ann.) − 1

2
(ζ(−4) + 4H2,4(q

ann.))

}

, (A.22)

∫

d2σ∂0∂
′
0∂0∂

′
0G∂0∂

′
0G = −

∫

d2σ∂0∂
′
0∂0∂0G∂0∂

′
0G

=
256π2

R2L8

∞
∑

n,k=1

∞
∑

m,l=−∞

m4l2
(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)

∫

d2σ sin2

(

nπσ

R

)

sin2

(

kπσ

R

)

=
64π2

RL7

{(

∑

m,n

m4

n2

R2 + 4m2

L2

)(

∑

k,l

l2

k2

R2 + 4l2

L2

)

+
1

2

∑

n

(

∑

m

m4

n2

R2 + 4m2

L2

)(

∑

l

l2

n2

R2 + 4l2

L2

)}

=
π4L

4R5

{

− ζ(−1)ζ(−3)E2(q
ann.)E4(q

ann.) − 1

2
(ζ(−4) + 4H2,4(q

ann.))

}

, (A.23)

∫

d2σ∂1∂1∂1G∂
′
1∂

′
1∂

′
1G =

∫

d2σ∂′1∂1∂1G∂
′
1∂1∂1G (A.24)

=
4π2

R8L2

∞
∑

n,k=1

∞
∑

m,l=−∞

n3k3

(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)

1

4

∫

d2σ sin

(

2nπσ

R

)

sin

(

2kπσ

R

)

=
π2

2R7L

{

∑

n

n6

(

∑

m

1
n2

R2 + 4m2

L2

)(

∑

l

1
n2

R2 + 4l2

L2

)}

=
π4L

8R5
(ζ(−4) + 4H2,4(q

ann.)),

∫

d2σ∂0∂0∂1G∂
′
0∂

′
0∂

′
1G =

∫

d2σ∂0∂
′
0∂1G∂0∂

′
0∂1G = −

∫

d2σ∂0∂
′
0∂1G∂0∂0∂

′
1G
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=
64π2

R4L6

∞
∑

n,k=1

∞
∑

m,l=−∞

nkm2l2
(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)

1

4

∫

d2σ sin

(

2nπσ

R

)

sin

(

2kπσ

R

)

(A.25)

=
8π2

R3L5

{

∑

n

n2

(

∑

m

m2

n2

R2 + 4m2

L2

)(

∑

l

l2

n2

R2 + 4l2

L2

)}

=
π4L

8R5
(ζ(−4)+4H2,4(q

ann.)),

∫

d2σ∂1∂
′
1∂1G∂

′
1∂0∂

′
0G =

∫

d2σ∂1∂
′
1∂1G∂1∂0∂

′
0G (A.26)

=
16π2

R6L4

∞
∑

n,k=1

∞
∑

m,l=−∞

n3kl2
(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)

(

− 1

4

)∫

d2σ sin

(

2nπσ

R

)

sin

(

2kπσ

R

)

=
2π2

R5L3

{

−
∑

n

n4

(

∑

m

1
n2

R2 + 4m2

L2

)(

∑

l

l2

n2

R2 + 4l2

L2

)}

=
π4L

8R5
(ζ(−4)+4H2,4(q

ann.)).

At three loops there are 3 possible contractions,

Iann.
6 =

∫

d2σ{∂0∂
′
0G∂0∂

′
0G∂0∂

′
0G+ ∂1∂

′
1G∂1∂

′
1G∂1∂

′
1G

+3∂0∂
′
0G∂0∂

′
0G∂1∂

′
1G+ 3∂1∂

′
1G∂1∂

′
1G∂0∂

′
0G} =

3π3L

2R5
F (qann.), (A.27)

Iann.
7 =

∫

d2σ∂α∂′αG∂
β∂′γG∂

′
β∂

γG =

∫

d2σ{∂0∂
′
0G∂0∂

′
0G∂0∂

′
0G+ ∂1∂

′
1G∂1∂

′
1G∂1∂

′
1G

+∂0∂
′
0G∂0∂

′
0G∂1∂

′
1G+ ∂1∂

′
1G∂1∂

′
1G∂0∂

′
0G} =

3π3L

4R5
F (qann.), (A.28)

Iann.
8 =

∫

d2σ∂α∂′βG∂
β∂′γG∂

γ∂α′G =

∫

d2σ{∂0∂
′
0G∂0∂

′
0G∂0∂

′
0G+ ∂1∂

′
1G∂1∂

′
1G∂1∂

′
1G}

=
3π3L

8R5
F (qann.). (A.29)

The details are:
∫

d2σ∂1∂
′
1G∂1∂

′
1G∂1∂

′
1G

=
8

R9L3

∞
∑

n,k,r=1

∞
∑

m,l,s=−∞

n2k2r2
(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)(

r2

R2 + 4s2

L2

)

×
∫

d2σ cos2

(

nπσ

R

)

cos2

(

kπσ

R

)

cos2

(

rπσ

R

)

=
1

R8L2

{(

∑

m,n

n2

n2

R2 + 4m2

L2

)(

∑

k,l

k2

k2

R2 + 4l2

L2

)(

∑

r,s

r2

r2

R2 + 4s2

L2

)

+
3

2

[

∑

n

n4

(

∑

m

1
n2

R2 + 4m2

L2

)(

∑

l

1
n2

R2 + 4l2

L2

)](

∑

r,s

r2

r2

R2 + 4s2

L2

)

+
1

4

∑

n,r

n2r2(n+ r)2
(

∑

m

1
n2

R2 + 4m2

L2

)(

∑

l

1
(n+r)2

R2 + 4l2

L2

)(

∑

s

1
r2

R2 + 4s2

L2

)

+
1

4

∑

n>r

n2r2(n− r)2
(

∑

m

1
n2

R2 + 4m2

L2

)(

∑

l

1
(n−r)2
R2 + 4l2

L2

)(

∑

s

1
r2

R2 + 4s2

L2

)
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+
1

4

∑

n<r

n2r2(r − n)2
(

∑

m

1
n2

R2 + 4m2

L2

)(

∑

l

1
(r−n)2

R2 + 4l2

L2

)(

∑

s

1
r2

R2 + 4s2

L2

)}

=
π3L

8R5

{

(ζ(−1)E2(q
ann.))3 +

3

2
ζ(−1)E2(q

ann.)(ζ(−2)

+4H2,2(q
ann.)) +

3

4
F (qann.)

}

, (A.30)

∫

d2σ∂1∂
′
1G∂1∂

′
1G∂0∂

′
0G

=
32

R7L5

∞
∑

n,k,r=1

∞
∑

m,l,s=−∞

n2k2s2
(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)(

r2

R2 + 4s2

L2

)

×
∫

d2σ cos2

(

nπσ

R

)

cos2

(

kπσ

R

)

sin2

(

rπσ

R

)

=
4

R6L4

{(

∑

m,n

n2

n2

R2 + 4m2

L2

)(

∑

k,l

k2

k2

R2 + 4l2

L2

)(

∑

r,s

s2

r2

R2 + 4s2

L2

)

−
[

∑

n

n2

(

∑

m

1
n2

R2 + 4m2

L2

)(

∑

s

s2

n2

R2 + 4s2

L2

)](

∑

l

k2

k2

R2 + 4l2

L2

)

+
1

2

[

∑

n

n4

(

∑

m

1
n2

R2 + 4m2

L2

)(

∑

l

1
n2

R2 + 4l2

L2

)](

∑

r,s

s2

r2

R2 + 4s2

L2

)

−1

4

∑

n,k

n2k2

(

∑

m

1
n2

R2 + 4m2

L2

)(

∑

l

1
n2

R2 + 4l2

L2

)(

∑

r,s

s2

(n+k)2

R2 + 4s2

L2

)

−1

4

∑

n,k

n2k2

(

∑

m

1
n2

R2 + 4m2

L2

)(

∑

l

1
n2

R2 + 4l2

L2

)(

∑

r,s

s2

(n−k)2
R2 + 4s2

L2

)}

=
π3L

8R5

{

− (ζ(−1)E2(q
ann.))3 +

1

2
ζ(−1)E2(q

ann.)(ζ(−2)

+4H2,2(q
ann.)) +

3

4
F (qann.)

}

, (A.31)

∫

d2σ∂1∂
′
1G∂0∂

′
0G∂0∂

′
0G

=
128

R5L7

∞
∑

n,k,r=1

∞
∑

m,l,s=−∞

n2l2s2
(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)(

r2

R2 + 4s2

L2

)

×
∫

d2σ cos2

(

nπσ

R

)

sin2

(

kπσ

R

)

sin2

(

rπσ

R

)

=
16

R4L6

{(

∑

m,n

n2

n2

R2 + 4m2

L2

)(

∑

k,l

l2

k2

R2 + 4l2

L2

)(

∑

r,s

s2

r2

R2 + 4s2

L2

)

−
[

∑

n

n2

(

∑

m

1
n2

R2 + 4m2

L2

)(

∑

s

s2

n2

R2 + 4s2

L2

)](

∑

l

l2

k2

R2 + 4l2

L2

)

+
1

2

[

∑

k

(

∑

s

s2

k2

R2 + 4s2

L2

)(

∑

l

l2

k2

R2 + 4l2

L2

)](

∑

n,m

n2

n2

R2 + 4m2

L2

)

– 60 –



J
H
E
P
0
6
(
2
0
0
9
)
0
1
2

+
1

4

∑

r,k

(r + k)2
(

∑

s

s2

r2

R2 + 4s2

L2

)(

∑

l

l2

k2

R2 + 4l2

L2

)(

∑

m

1
(k+r)2

R2 + 4m2

L2

)

+
1

4

∑

r,k

(r − k)2
(

∑

s

s2

r2

R2 + 4s2

L2

)(

∑

l

l2

k2

R2 + 4l2

L2

)(

∑

m

1
(k−r)2
R2 + 4m2

L2

)}

=
π3L

8R5

{

(ζ(−1)E2(q
ann.))3 − 1

2
ζ(−1)E2(q

ann.)(ζ(−2)

+4H2,2(q
ann.) +

3

4
F (qann.)

}

, (A.32)

∫

d2σ∂0∂
′
0G∂0∂

′
0G∂0∂

′
0G

=
512

R3L9

∞
∑

n,k,r=1

∞
∑

m,l,s=−∞

m2l2s2
(

n2

R2 + 4m2

L2

)(

k2

R2 + 4l2

L2

)(

r2

R2 + 4s2

L2

)

×
∫

d2σ sin2

(

nπσ

R

)

sin2

(

kπσ

R

)

sin2

(

rπσ

R

)

=
64

R2L8

{(

∑

m,n

m2

m2

R2 + 4m2

L2

)(

∑

k,l

l2

k2

R2 + 4l2

L2

)(

∑

r,s

s2

r2

R2 + 4s2

L2

)

+
3

2

[

∑

n

(

∑

m

m2

n2

R2 + 4m2

L2

)(

∑

s

s2

n2

R2 + 4s2

L2

)](

∑

k,l

l2

k2

R2 + 4l2

L2

)

−1

4

∑

n,k

(

∑

m

m2

n2

R2 + 4m2

L2

)(

∑

s

s2

(n+k)2

R2 + 4s2

L2

)(

∑

l

l2

k2

R2 + 4l2

L2

)}

=
π3L

8R5

{

− (ζ(−1)E2(q
ann.))3 − 3

2
ζ(−1)E2(q

ann.)(ζ(−2)

+4H2,2(q
ann.)) +

3

4
F (qann.)

}

. (A.33)

A.4 The torus

The Green’s function on the torus with periodicities L,R is given by

G(σ0, σ1;σ
′
0, σ

′
1) =

1

4π2RL

∑

(n,m)6=(0,0)

e
2πim

L
(σ0−σ′0)e

2πin
R

(σ1−σ′1)

n2

R2 + m2

L2

. (A.34)

A.4.1 Partition function at O(L−3)

This was computed already in [9], and we reproduce it here for completeness. The diagrams

at this order are,

Itor.
1 =

∫

d2σ∂α∂
α′

G∂β∂
β′

G =

∫

d2σ{(∂0∂
′
0G+ ∂1∂

′
1G)(∂0∂

′
0G+ ∂1∂

′
1G)} =

1

RL
,

Itor.
2 =

∫

d2σ∂α∂β′G∂α∂β
′

G =

∫

d2σ{∂0∂
′
0G∂0∂

′
0G+ ∂1∂

′
1G∂1∂

′
1G}

=
π2L

18R3
E2

2(qtor.) − π

3R2
E2(q

tor.) +
1

RL
, (A.35)
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and it is easy to check that they are invariant under R↔ L as they must be.

Below are the details of the computation:

∫

d2σ∂1∂
′
1G∂1∂

′
1G =

1

R5L

(

2
∞
∑

n=1

∞
∑

m=−∞

n2

m2

L2 + n2

R2

+
∑

m6=0

0

)2

=
1

R5L
(2πRLζ(−1)E2(q

tor.))2 =
4π2L

R3
(ζ(−1)E2(q

tor.))2, (A.36)

∫

d2σ∂0∂
′
0G∂1∂

′
1G =

1

R5L

(

2

∞
∑

n=1

∞
∑

m=−∞

n2

m2

L2 + n2

R2

+
∑

m6=0

0

)

×
(

2

∞
∑

n=1

∞
∑

m=−∞

m2

m2

L2 + n2

R2

+
∑

m6=0

L2

)

=
1

R3L3
(2πRLζ(−1)E2(q

tor.))

(

−2
πL3

R
ζ(−1)E2(q

tor.) + 2L2ζ(0)

)

= −4π2L

R3
(ζ(−1)E2(q

tor.))2 +
4π

R2
ζ(0)ζ(−1)E2(q

tor.), (A.37)

∫

d2σ∂0∂
′
0G∂0∂

′
0G =

1

RL5

(

2
∞
∑

n=1

∞
∑

m=−∞

m2

m2

L2 + n2

R2

+
∑

m6=0

L2

)2

=
1

RL5

(

−2
πL3

R
ζ(−1)E2(q

tor.) + 2L2ζ(0)

)2

(A.38)

=
4π2L

R3
(ζ(−1)E2(q

tor.))2 − 8π

R2
ζ(0)ζ(−1)E2(q

tor.) +
4

RL
(ζ(0))2,

A.4.2 Partition function at O(L−5)

At this order there are both 2-loop and 3-loop contributions (see figures 1 and 2) . At two

loops there are two possible contractions, which both turn out to vanish:

Itor.
3 =

∫

d2σ∂α∂
α′

∂β∂
β′

G∂γ∂
γ′G

=

∫

d2σ(∂0∂
′
0∂0∂

′
0G+ ∂1∂

′
1∂1∂

′
1G+ 2∂1∂

′
1∂0∂

′
0G)(∂1∂

′
1G+ ∂0∂

′
0G) = 0, (A.39)

Itor.
4 =

∫

d2σ∂α∂β∂γ′G∂
α∂β∂γ

′

G = 0. (A.40)

Below are the details of the computation:
∫

d2σ∂1∂
′
1∂1∂

′
1G∂1∂

′
1G = −

∫

d2σ∂1∂
′
1∂1∂1G∂1∂

′
1G

=
4π2

R7L

(

2

∞
∑

n=1

∞
∑

m=−∞

n4

m2

L2 + n2

R2

+
∑

m6=0

0

)

×
(

2

∞
∑

n=1

∞
∑

m=−∞

n2

m2

L2 + n2

R2

+
∑

m6=0

0

)

=
16π4L

R5
ζ(−1)ζ(−3)E2(q

tor.)E4(q
tor.), (A.41)
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∫

d2σ∂1∂
′
1∂1∂

′
1G∂0∂

′
0G =

4π2

R5L3

(

2

∞
∑

n=1

∞
∑

m=−∞

n4

m2

L2 + n2

R2

+
∑

m6=0

0

)

×
(

2

∞
∑

n=1

∞
∑

m=−∞

m2

m2

L2 + n2

R2

+
∑

m6=0

L2

)

=
16π3

R4

(

− πL

R
ζ(−1)ζ(−3)E2(q

tor.)E4(q
tor.)

+ζ(0)ζ(−3)E4(q
tor.)

)

, (A.42)

∫

d2σ∂1∂
′
1∂0∂

′
0G∂1∂

′
1G = −

∫

d2σ∂1∂1∂0∂
′
0G∂1∂

′
1G

=
4π2

R5L3

(

2

∞
∑

n=1

∞
∑

m=−∞

m2n2

m2

L2 + n2

R2

+
∑

m6=0

0

)

×
(

2

∞
∑

n=1

∞
∑

m=−∞

n2

m2

L2 + n2

R2

+
∑

m6=0

0

)

= −16π4L

R5
ζ(−1)ζ(−3)E2(q

tor.)E4(q
tor.), (A.43)

∫

d2σ∂1∂
′
1∂0∂

′
0G∂0∂

′
0G = −

∫

d2σ∂1∂
′
1∂0∂0G∂0∂

′
0G

=
4π2

R3L5

(

2

∞
∑

n=1

∞
∑

m=−∞

m2n2

m2

L2 + n2

R2

+
∑

m6=0

0

)

×
(

2

∞
∑

n=1

∞
∑

m=−∞

m2

m2

L2 + n2

R2

+
∑

m6=0

L2

)

=
16π3

R4

(

πL

R
ζ(−1)ζ(−3)E2(q

tor.)E4(q
tor.)

−ζ(0)ζ(−3)E4(q
tor.)

)

, (A.44)

∫

d2σ∂0∂
′
0∂0∂

′
0G∂1∂

′
1G =

4π2

RL7

(

2

∞
∑

n=1

∞
∑

m=−∞

m4

m2

L2 + n2

R2

+
∑

m6=0

m2L2

)

×
(

2
∞
∑

n=1

∞
∑

m=−∞

n2

m2

L2 + n2

R2

+
∑

m6=0

0

)

=
16π4L

R5
ζ(−1)ζ(−3)E2(q

tor.)E4(q
tor.), (A.45)

∫

d2σ∂0∂
′
0∂0∂

′
0G∂0∂

′
0G = −

∫

d2σ∂0∂0∂0∂
′
0G∂0∂

′
0G

=
4π2

RL7

(

2
∞
∑

n=1

∞
∑

m=−∞

m4

m2

L2 + n2

R2

+
∑

m6=0

m2L2

)

×
(

2
∞
∑

n=1

∞
∑

m=−∞

m2

m2

L2 + n2

R2

+
∑

m6=0

L2

)
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= −16π4L

R5
ζ(−1)ζ(−3)E2(q

tor.)E4(q
tor.)

+
16π3

R4
ζ(0)ζ(−3)E4(q

tor.). (A.46)

At three loops there are 3 possible contractions:

Itor.
6 =

∫

d2σ∂α∂
α′

G∂β∂
β′

G∂γ∂
γ′G =

∫

d2σ{∂0∂
′
0G∂0∂

′
0G∂0∂

′
0G+ ∂1∂

′
1G∂1∂

′
1G∂1∂

′
1G

+3∂0∂
′
0G∂0∂

′
0G∂1∂

′
1G+ 3∂1∂

′
1G∂1∂

′
1G∂0∂

′
0G} =

8

L2R2
ζ(0)3, (A.47)

Itor.
7 =

∫

d2σ∂α∂′αG∂
β∂′γG∂

′
β∂

γG =

∫

d2σ{∂0∂
′
0G∂0∂

′
0G∂0∂

′
0G+ ∂1∂

′
1G∂1∂

′
1G∂1∂

′
1G

+∂0∂
′
0G∂0∂

′
0G∂1∂

′
1G+ ∂1∂

′
1G∂1∂

′
1G∂0∂

′
0G}

= − 16π

LR3
ζ(−1)E2(q

tor.)ζ(0) +
16π2

R4
(ζ(−1)E2(q

tor.))2ζ(0) +
8

L2R2
ζ(0)3, (A.48)

Itor.
8 =

∫

d2σ∂α∂′βG∂
β∂′γG∂

γ∂α′G =

∫

d2σ{∂0∂
′
0G∂0∂

′
0G∂0∂

′
0G+ ∂1∂

′
1G∂1∂

′
1G∂1∂

′
1G}

= − 24π

LR3
ζ(−1)E2(q

tor.)ζ(0) +
24π2

R4
(ζ(−1)E2(q

tor.))2ζ(0) +
8

L2R2
ζ(0)3. (A.49)

Below are the details of the computation:

∫

d2σ∂0∂
′
0G∂0∂

′
0G∂0∂

′
0G =

1

R2L8



2
∞
∑

n=1

∞
∑

m=−∞

m2

n2

R2 + m2

L2

+
∑

m6=0

L2





3

= −8π3L

R5
(ζ(−1)E2(q

tor.))3 +
24π2

R4
(ζ(−1)E2(q

tor.))2ζ(0) − 24π

LR3
ζ(−1)E2(q

tor.)ζ(0)2

+
8

L2R2
ζ(0)3, (A.50)

∫

d2σ∂0∂
′
0G∂0∂

′
0G∂1∂

′
1G

=
1

R4L6



2
∞
∑

n=1

∞
∑

m=−∞

m2

n2

R2 + m2

L2

+
∑

m6=0

L2





2

2
∞
∑

n=1

∞
∑

m=−∞

n2

n2

R2 + m2

L2

+
∑

m6=0

0



 (A.51)

=
8π3L

R5
(ζ(−1)E2(q

tor.))3 − 16π2

R4
(ζ(−1)E2(q

tor.))2ζ(0) +
8π

LR3
ζ(−1)E2(q

tor.)ζ(0)2,
∫

d2σ∂0∂
′
0G∂1∂

′
1G∂1∂

′
1G

=
1

R4L6



2
∞
∑

n=1

∞
∑

m=−∞

m2

n2

R2 + m2

L2

+
∑

m6=0

L2







2
∞
∑

n=1

∞
∑

m=−∞

n2

n2

R2 + m2

L2

+
∑

m6=0

0





2

= −8π3L

R5
(ζ(−1)E2(q

tor.))3 +
8π2

R4
(ζ(−1)E2(q

tor.))2ζ(0), (A.52)

∫

d2σ∂1∂
′
1G∂1∂

′
1G∂1∂

′
1G =

1

R4L6



2
∞
∑

n=1

∞
∑

m=−∞

n2

n2

R2 + m2

L2

+
∑

m6=0

0





3

(A.53)
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=
1

R8L2
(2πRLζ(−1)E2(q

tor.))3 =
8π3L

R5
(ζ(−1)E2(q

tor.))3.

A.5 F (q): numerical evaluation

Due to technical difficulties in the evaluation of F (q) as a finite sum of Eisenstein series,

we study its modular properties using a numerical method. We are able to extract the

coefficients in the series, F (q̃) =
∑

n an(
R
L )n + O(q̃), which is a good approximation for

R
L → ∞. We first extract the divergent part which we compute with a zeta function

regularization:

F (q) =

∞
∑

n,r=1

(n2r + nr2)
1 + qn

1 − qn
1 + qr

1 − qr
1 + qn+r

1 − qn+r
(A.54)

=

∞
∑

n,r=1

(n2r + nr2)

(

1 + 2
qn

1 − qn

)(

1 + 2
qr

1 − qr

)(

1 + 2
qn+r

1 − qn+r

)

= 4

[ ∞
∑

n=1

n2

(

qn

1 − qn

)

][

− 1

12
+ 2

∞
∑

r=1

r

(

qr

1 − qr

)

]

+2
∞
∑

n,r=1

(n2r + nr2)

(

1 + qn

1 − qn

)(

1 + qr

1 − qr

)(

qn+r

1 − qn+r

)

.

We then sum F using this expression up to the n, r = 1000 term, and perform a fit for

small q̃ of the form F (q̃) = −a5
π4

log(q)5
− a4

π2

log(q)4
− a3

1
log(q)3

+O(q̃). Our result (expressed

as rational numbers times π’s as expected) is

F (q̃) = − π4

3 log(q)5
− 4π2

3 log(q)4
− 4

3 log(q)3
+O(q̃)

=
R5

3πL5
− 4R4

3π2L4
+

4R3

3π3L3
+O(q̃). (A.55)

B Conventions for sections 4-6

B.1 General conventions

The coordinates we use are Zµ = {Xα,Xi, Y B, ea}, where the indices are arranged in the

following way (unless written otherwise):

µ, ν, ρ, . . . = 0, . . . , 9, α, β, γ, . . . = 0, 1, i, j, k, . . . = 2, . . . ,D−1 (B.1)

ξ = 0, . . . ,D−1, B = D, . . . ,D+NB−1, a = D+NB, . . . , 9,

where NB is the number of massive scalars, NF is the number of massive fermions, N0
B is

the number of massless transverse scalars and N0
F is the number of massless fermions.

We use the following notation to sum over the scalar fields,

X ·X = δijX
iXj, Y · Y = δabY

aY b. (B.2)
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On the worldsheet we have the following metric and antisymmetric tensor:

ηαβ = ηαβ =

(

−1 0

0 1

)

, ǫαβ =

(

0 1

−1 0

)

, ǫαβ =

(

0 −1

1 0

)

. (B.3)

We define

k1 × k2 ≡ ǫαβk1αk2β . (B.4)

We also use the lightcone coordinates α̃ = (+,−), defined by the relation σ± = σ0 ± σ1.

In these coordinates,

ηα̃β̃ =

(

0 −1
2

−1
2 0

)

, ηα̃β̃ =

(

0 −2

−2 0

)

, ǫα̃β̃ =

(

0 −2

2 0

)

,

1

4
k2 =

1

4
(kσkσ − kτkτ ) = −k+k−, ik± = ∂±, ∂± =

1

2
(∂0 ± ∂1). (B.5)

B.2 Spinor conventions

Our spinor notation is almost identical to the one used in [35]. We choose the Majorana

condition such that the fermions are real variables. This is consistent with choosing the

conjugation operation to be θ̄ = θTΓ0. We introduce the 10 space-time gamma matrices

Γµ which satisfy {Γµ,Γν} = 2gµν , and the chirality operator Γ11 = Γ0 · · ·Γ9. We use the

notation Γµ1···µn = 1
n!Γ[µ1

· · ·Γµn] where the brackets indicate anti-symmetrization of the

gamma matrices; e.g. Γ01 = 1
2(Γ0Γ1 −Γ1Γ0). The matrices are real and can be broken into

blocks in the following way (using the metric (4.2)),

Γα =
√

2πα′ρα ⊗ I, Γi(B) =
√

2πα′ρ⊗ γi(B), Γa = ρ⊗ γa, (B.6)

with the chirality operators,

Γ11 = ρ⊗ γc, ρ = ρ0ρ1, γc = γ2 · · · γ9. (B.7)

The worldsheet gamma matrices obey the following anti-commutation relations,

{ρα, ρβ} = 2ηαβ , {ρα, ρ} = 0. (B.8)

We explicitly write the matrices we will use:

ρ0 =

(

0 1

−1 0

)

, ρ+ = −2ρ− =

(

0 0

2 0

)

,

ρ1 =

(

0 1

1 0

)

, ρ− = −2ρ+ =

(

0 −2

0 0

)

, ρ = ρ0ρ1 =

(

1 0

0 −1

)

, (B.9)

and the following relations:

ρ+ = ρ0 + ρ1, ρ− = ρ0 − ρ1,

ǫαβρ
α∂β = ρ−∂− − ρ+∂+, ηαβρ

α∂β = ρ+∂+ + ρ−∂−. (B.10)

The 8 dimensional gamma matrices γi obey flat space anti-commutation relations:

{γi, γj} = 2δij , {γi, γc} = 0 (i = 2, . . . , 9). (B.11)
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